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INTRODUCTION 

In the human’s history of coal mining, there have many approaches to find 

problems, discuss the problems, and then solve the problems, this is a process 

through which the industry continuously upgrade itself with new theories and 

materials. Right now in modern days, some famous approaches include 

analytical solution, numerical solution, experimental solution and field 

observations are parallel with each other. Many practitioners proposed their 

solutions with the assistance of at least one approach or more to defend their 

ideologies (Aziz et al. 2016). Nonetheless, for coal mining engineers, field 

observation is still and will be still the most straightforward, the most effective, 

the most economic and the most technique-sound approach to discover 

engineering problems and provide solutions (Li 2010; Kang et al. 2013). In this 

paper, field observation was conducted in Fujiaao Coalmine, Shanxi province, 

China, and some supporting problems are discussed and some standpoints 

regarding solutions are proposed. 

 

GEOLOGY AND SUPPORTING PATTERN 

Geology 

The trial was conducted at Fujiaao Coal Mine, it locates in Pu county, Linfen 

City, in Shanxi Provence. The annual coal production capacity is 1,800,000 tons 

and the main coal mining method is longwall mechanized full-seam mining 

method.  

The elevation of coal seam is +1220 m, the ground elevation is +1512~+1340 

m, and the mining elevation is +1247~+1186 m. Fig. 1 presents the layout of 

coal mining face 105, 107 and 109, supporting problems in the entries affiliated 

to face 107 are the study object in this study, namely head entry 107 and tail 

entry 107. Face 107 locates at the middle of the north side of the coal field, and 

the opening cut borders the boundary of coal field. Its eastern side was gob area 

of face 109 and its estern side was gob area of face 105.  
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Fig. 1 Layout of coal mining face 105, 107 and 109 

 

The strike length of the head entry and tail entry is 1903 m and the length of the 

face is 191 m, burial depth of coal seam 107 can range from 124 m to 292 m. 

Therefore, face 107 belongs a typical island working face and it certainly suffers 

comparatively high stress from overlaying strata, and a scientific selection of 

support scheme is critical to the deformation controlling effects in the head entry 

107 and tail entry 107. Plus, two coal pillars are retained with a width of 15 m to 

isolate entries of face 107 with 109 gob area and 105 gob area. Undoubtedly 

the wise choose of pillar width also plays an important role in regards to the 

balance between a higher extraction rate and a safe entries space. 

Fig. 2 gives the geologic column for coal seam 11#. As can be seen, coal seam 

thickness is 2.7 m and overlaid by a layer of mudstone with thickness of 8.35 m, 

above the mudstone there finds a layer of fine sandstone with thickness of 5.02 

m. Strata beneath the coal seam is mudstone (4.49 m), aluminum mudstone 

(2.20 m), and limestone (2.13 m), successively. Overall, the burial depth of coal 

seam is 141.79 m. 

 

 
Fig. 2 Geologic column for coal seam 11# 

 

Supporting pattern 

The size of head entry 107 and tail entry 107 are identical and the width*height 

is 4600 mm · 2900 mm. Supporting pattern for the head entry 107 and tail entry 

107 also keeps identical and is drawn in Fig. 3.  

For the roof support, three roof bolt and two cable bolt overlie the W-shaped 

steel belt through the holes machined on the belt, two corner bolts are installed 

at an angle of 75° with the horizontal direction and their respective distance to 

the rib is 400 mm.  
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Fig. 3 Cross-section supporting pattern (a) and top view of the supporting pattern (b) 

 

The holes distance on the steel belt is 1000 mm, 900 mm, 900 mm, and 1000 

mm, and the holes bilateral the central hole are set for cable bolts. Dimension 

for the steel belt is 250 mm · 4200 mm with a thickness of 3 mm. Dimension for 

roof bolt is 20 mm in diameter and 2000 mm in length, cable bolt is composed 

of seven indented wires that are twisted around a centre wire, the diameter of 

cable bolt is 17.8 mm and the length is 8200 mm. For the rib side, three bolts 

are installed altogether at each side and they are also vertically arranged to the 

rib. Bolts at each side are pinned on the ladder-shaped steel beam with distance 

to the roof set respectively as 300 mm, 1400 mm, and 2500 mm. Dimension for 

rib bolts is 20 mm in diameter and 2000 mm in length that is identical to roof 

bolts. Attached face places for roof bolts and rib bolts are spherical domed with 

a diameter of 130 mm and thickness of 10 mm. Steel mesh covers on the bare 

roof and bare ribs and then fixed by steel belts, cable bolts, and bolts. The 

diameter for the mesh bar is 2.8 mm and the dimension for a whole mesh unit 

is 4600 mm×1100 mm. Overall, the distance between steel belts is 800 mm and 

the distance between the neigh boring rows of cable bolts is 1600 mm, as 

labeled in Fig. 3b. 

In Fig. 4, the practical support patterns are presented, which demonstrate a 

more straightforward interpretation to the explanations aforementioned in 

regards to Fig. 3. 

 

 
Fig. 4 Practical support patterns in entries, (a) specific interpretation on support components,  

(b) an overall perspective of headentry 107 (belt conveyor arranged for coal transportation) 
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PROBLEMS DESCRIPTION 

Under the support pattern illustrated in section 2.2, both of the head entry for 

107 and the tail entry for 107 suffers severe deformation problems.  

The most prominent one is the roof subsidence, the roof subsistence occurs a 

short time after excavation, even without the disturbance caused by advancing 

of coal mining face. This phenomenon can be observed in Fig. 5a,b, which 

exhibit failure pattern nearby the right corner of roof (the left corner was difficulty 

to be photographed due to the arrangement of ventilation pipe on the left side). 

Field observation indicates that roof subsidence happens in an integral measure 

and drops to the floor. In Fig. 5a, the steel belt is bended due to the dropping of 

the roof and the locking effect of the corner bolt. A more serious situation is 

presented in Fig. 5b, coal mass in the roof is cracked and the roof clearly 

subsides towards the floor. Corner bolt sinks into coal mass and is 

unobservable, mesh originally attached at the upper corner of ribs is also buried 

into cracked subsided coal mass.  

 

 
Fig. 5 Entries’ breakage morphology (a-c) and auxiliary strengthening measure (d) 

 

As for the deformation of ribs, however, most sections shows no obvious bulking 

phenomenon and ribs deformation is not very obvious. Considering the 

supporting pattern on the ribs, the support strength should be not very high. 

Nevertheless, field observation indicates that seldom has a bolting system failed 

or has a ladder-shaped steel beam ruptured. It proves that the stability of coal 

ribs can be guaranteed under its own integrity and reinforcement provided by 

support components. Therefore the retained coal pillar width is also reasonable 

(15 m as stated in section 2.1). However, areas with overlarge roof subsidence 

is sometimes accompanied by floor heave, which further leads to bulking of ribs 

as exampled in Fig. 5c.  
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In order to improve the support effects of the entries, the coal mine engineers 

utilize single props to resist the subsidence of the roof, as shown in Fig. 5d. This 

method functions in some areas, but the effects is limited when water 

spilling/leaching is encountered. Water will greatly soften the floor and will then 

lead to the sink of the single props, afterwards, the holding power of the props 

will be reduced. Oftentimes the effect is still limited even base boards are applied 

beneath the props. Moreover, the recovery procedure of props must be carried 

out in advance when coal cutting face approaches, which further aggregates the 

working load of workers and increases the operational procedures, a high-

efficiency coal production requirement is difficult to be attained. 

 

PROBLEMS DISCUSSION AND SOLUTIONS 

Strength mismatch in bolting system 

By referring Fig. 3, it can be seen that the bolting system consists of exterior nut 

and face place and also interior bolt and resin annulus. Based on field 

observation, the authors noticed that barely are the face plates distorted and this 

phenomenon is especially prominent for those bolts installed on the roof. Then 

why the roof deformation cannot be controlled? some photos showing the actual 

failures are listed in Fig. 6. As can be seen, though the face place is intact, the 

belt always breaks due to penetration of face plate, not matter the assorted 

component is rock bolt (Fig. 6a) or cable bolt (Fig. 6b), oftentimes steel belt can 

be torn (Fig. 6c). This face plate is referred as ‘sole domed plate’ in the following 

text. 

 

 
Fig. 6 photos showing penetration of face plate through steel belt 

 

In regards to the shape of the face plate, it cannot, strictly speaking, be treated 

as a standard face plate due to its sole domed configuration. The diameter for 

the sole domed plate is 130 mm, and the stress distribution between the steel 

belt and sole domed plate is schematically sketched in the left side of Fig. 7.  

 

 
Fig. 7 Stress distribution between face plate and steel belt for different types  
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As can be clearly noticed, the stress altogether concentrates on the edge of the 

sole domed plate. Under such a circumstance, the bearing strength of the bolting 

system is not determined by the loading properties of the bolt, neither by the nut, 

or resin annulus, or sole domed plate mentioned above. It is actually determined 

by the anti-penetration capacity of the steel belt, considering the thin thickness 

(3 mm) of the steel belt, then it is without any doubt that the strength mismatch 

between steel belt and face plate becomes a decisive factor and the 

effectiveness of belt is greatly reduced. As demonstrated by failure examples in 

Fig. 6. 

Practitioners apply steel belt to the roof support mainly for enlarging the stress 

distribution area on the roof and the stress is just sourcing from bearing load of 

bolting system. In this trial, the contact area between sole domed plate and steel 

belt is circular arranged, under similar loading, the plate is easy to penetrate 

through the belt and then sink into coal mass, thereby the actual bearing ability 

is limited. 

On the right side of Fig. 7, stress distribution of a normal face plate is presented. 

Unlike sole domed plate, this plate is processed with a plate around the 

periphery of the dome, thus the stress will evenly distribute on the plate, as 

indicated by the upward arrows on the figure. The contact area between steel 

belt and plate is face contacted, the penetration through the steel belt is unlikely 

to occur. If the surrounding rock mass deforms and the deformation continues, 

the load will continuously transfer from bolt to the face plate, then from face plate 

to steel belt, and afterwards from steel belt to surrounding rock mass. 

 

HUMID COAL MASS LOWERING BONDING EFFECTS IN BOLTING 

SYSTEM 

Field observation has proved that water leaching/spilling always can be noticed 

in some locations, especially for roof strata, and a lot of premature failures of 

bolting system can also be noticed, some examples are selected and listed in 

Fig. 8.  

 

 
Fig. 8 Failures of bolting system, (a) bolting components disappears,  

(b) fall off of bolt altogether with face plate and nut 

 

In Fig. 8a, bolt, face plate and nut disappears from the roof, leaving steel belt 

contacts loosely with roof. An obvious indentation can be noticed on the surface 

of steel belt, which was caused by the compressional force between face plate 

and steel belt during pretension process or by roof’s subsidence. In Fig. 8b, the 
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bolting component falls off from the borehole and hangs on the roof. Obviously 

the bolt in such a state provides no reinforcing effects to the roof strata. It is very 

likely that some mechanical interactions between bolt and borehole wall sustain 

the dead weight of the bolting component, either by friction or horizontal 

shearing of strata. Similarly, an indentation is also observable on the steel belt.  

In view of the existence of indentation on the steel belt, it can be concluded that 

there must existed a period before the detachment that the face plate had a 

good contact with the steel belt and even certain value of loading was sustained 

between them. With the passage of time, roof deformation aggravated and 

which caused load rising of bolting system, eventually it should have been the 

penetration of face plate that failed the system if the thin thickness of belt was 

considered, as has been formerly stated in section 4.1. However, the true 

situation is the popup or fall off of the whole bolting component (Fig. 8), leaving 

a shallow indentation on the steel belt.  

Based on reverse inference, it is very sure that the axial load on the bolt was 

quite low before failure because the system’s bearing capacity was determined 

by the anti-penetration capacity of the steel belt, as previously demonstrated. 

Therefore the improper stirring of resin during installation could be one main 

inducement, and the low bonding strength at the interface between resin and 

borehole wall should be another inducement. The first inducement can be 

largely avoided as long as the installation procedure is regulated and proper 

rules for ‘spin and hold’ or ‘spin to stall’ is followed. The second inducement is 

mainly connected with the environment inside the borehole. It has been 

commonly acknowledged that the mix of the two components inside epoxy resin 

cartridge will be greatly weakened in humid environment -(Zhang et al. 2011). 

Field observation has confirmed the water spilling/leaching property of coal 

mass, hence the failure of bolting system was caused by weak bonding force 

between resin annulus and borehole wall due to the existence of water. Once 

the bolts were loaded and roof’s deformation continued, decoupling would 

eventually occur inside bolting system then further led to popup or fall off of bolt.  

Therefore, cement grouting measure is suggested at sections where the 

humidity is high.  

 

Isolation between support zones of rock bolts and cable bolts 

Coal mine practitioners selected cable bolt and rock bolt to reinforce strata inside 

the coal mass, and this measure is always effective and reasonable based on 

numerous successful trials all around the world not only in coal mine application 

but also in civil, hydraulic and slope deformation controlling areas. Nonetheless, 

wise choice of parameters do matter a lot.   

In Fujiaao coal mine, the length for cable bolt is 8200 mm and the diameter is 

17.8 mm whilst corresponding values for rock bolt are 2000 mm and 20 mm, 

respectively. Then the negative effects can be analyzed from two aspects. The 

first one is the isolation between support zones of rock bolts and cable bolts; the 

second one is the long time costed on drilling process for 8200 mm long 

borehole, normally installing one cable bolt can cost approximate one hour. 
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Technically speaking, elongation ratios for cable bolt (0.03) and rock bolt (0.2) 

are totally different, therefore their elongation value under identical load will also 

different, which further leaves opportunity to strata to deform to accommodate 

such a confliction. Furthermore, it has been widely acknowledged that roof’s 

subsidence is a progressive procedure which initially only occurs at the shallow 

depth and then mitigates to the far distance to the excavation. As a result, there 

should exist a period when the function of cable bolt is limited or the function of 

cable bolt is limited, depending on which one carries the roof’s load firstly. In 

Fig. 9, hereinbefore illustrated mechanism is schematically drawn, in which the 

length of the double arrowed line indicates the value of sustained load. 

 

 
Fig. 9 Schematic sketch of reinforcing zones isolation between rock bolts and cable bolts 

 

Fig. 9a portrays an early state of the entry with no deformation of coal mass 

expressed. Considering the progressive deformation procedure and the 

elongation confliction illustrated above, in the very beginning, only rock bolts are 

sensitive to roof’s subsidence and therefore can be loaded, cable bolts at this 

time are barely loaded due to overlarge elongation ratio gap with rock bolts. 

However, as subsidence aggregates, the fracture of roof strata will penetrate to 

the deep area and then activate the reinforcing effects of cable bolts (Fig. 9b). 

Though cable bolts can be loaded at later stage, the breakage of roof strata has 

already transferred into the deep areas. As a results, roof strata drops to the 

floor as an integrity with cracks abundantly distributed inside, especially for the 

rock bolts reinforcing zone. Roof strata at this moment already loses its self-

supporting ability (Frith et al. 2018), the dead weight is largely sustained by cable 

bolts, causing a formation of cable reinforcing zone. Then the stress will transfer 

bilaterally to ribs and lead to ribs bulking, eventually stress will transfer from ribs 

to floor, leading to severe floor heave problem (Mo et al. 2019). Former 

procedure is sketched in Fig. 9b. 

In Fig. 10, approximate D-L relationship for rock bolt, overlong cable bolt and 

cable bolt with proper length is plotted. Under specific deformation of 

surrounding coal mass, the load of overlong cable bolt is the smallest, indicating 

an insufficient reinforcement to strata. Whilst if the cable bolt length is 
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approximate, it’s bearing capacity will be approximately equal to rock bolt, 

therefore a synergetic reinforcement can be achieved.  

 

 
Fig. 10 Approximate D-L relationship for rock bolt,  

overlong cable bolt and cable bolt with proper length 

 

Low conversion rate between pretension force and axial force 

For all rock bolts and cable bolts installed in the entries, certain pretension force 

was applied on the tendons to guarantee the active reinforcing effects to strata. 

However, field observation reveals that the active reinforcing effect is rather 

limited, as can be seen by the values of pressure gauges.  

Fig. 11 gives two examples and similar ones are too many too be listed here, it 

can be seen that values both for rock bolt (left one) and cable bolt (right one) 

are quite low (no more than 10 kN). Regardless of the loading impacts from 

roof’s deformation, these readings are extremely low compared with required 

values that indicate approximate pretension force. Take 18 mm diameter bolt for 

example, the pretension force should at least reach 70 kN or more to attain 

pretension effect. Moreover, the whole systems in Fig. 11 show no sign of failure 

at any component.  

 

   
Fig. 11 Low bolting force indicated by pressure gauge 

 

Actually, practitioners utilized torque wrench to apply pretension force. However, 

as can be seen, all of the bolts were not equipped with a washer between nut 

and face plate (Fig. 6a,b). The washer is very important and can greatly increase 

the transfer efficiency between applied torque on the nut and axial force along 

the bolt (Kang et al. 2016). As for cable bolt, the pretension force is applied by 

tension procedure, an insufficient tensile capacity should be one of the main 

reason leading to the low pretension force of cable bolts. 
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CONCLUSION 

In this study, field observation is conducted in a coal mine and some new 

insights are proposed to deepen the understanding of coal mine support 

methodology. Altogether four factors are took into consideration like strength 

mismatch in bolting system, impacts of humid coal mass on stability of bolting 

system, isolation between cables’ supporting zone and bolts’ supporting zone, 

and lastly, the low conversion rate between pretension force and axial force. It 

should be emphasized that coal mine practitioners should take wise 

consideration before selection of supporting components. Oftentimes the bolting 

system can be failed not because of the strength of the bolt itself but because 

of its assorted components. As a whole, suggestions are established in this 

study. Such as proper choice of face plate to expand supporting strength to coal 

mass, full consideration of coal mass humidity and consider grouting approach 

if the humidity is high, approximate cables’ length to connect cables’ supporting 

zone and bolts’ supporting zone, and selection of high-conversion rate washer 

to meet high axial pretension (active support). 
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Abstract.  
In this paper, field observation is conducted in Fujiaao Coal Mine, Linfen city in Shanxi 
province, China, which is unique because of its island-typed mining layout. Firstly, geology, 
layout of the coal cutting face, supporting pattern are presented and details are also provided. 
Then the problems are discussed and analyzed based on existing bolting theories. It finds out 
the length of the cable bolt is too long, which requires long time to drill boreholes, whilst the 
effectiveness is limited due to the illogical combination between cable bolt function zone and 
rock bolt function zone. Also, the face place allocated to rock bolt is very likely to cause line 
contact between its edge and steel belt, thus the bearing force is tremendously weakened 
and solely determined by strength of belt. Furthermore, field observation proves the low active 
supporting effects to roof, thus leading obvious roof sink even without the disturbance of 
mining activity. Eventually, some solutions are proposed with the intention to improve the 
situation based on the economic and technical considerations, including bolting in humidity 
environment, rational cable bolt length, wise choice of face plate, and ways to increase 
pretension force. The viewpoints and comments of this study can be referred by practitioners 
in coal mines sharing same difficulties. 
 
Keywords: coal mine support, bolt, support optimization, field observation, support failure 
 
 
 
 
 
 
 

 


