

Contact address: a.szelezinski@wm.umg.edu.pl

Containerization of Server Services

doi:10.2478/mape-2020-0028
Date of submission to the Editor: 03/2020
Date of acceptance by the Editor: 06/2020

MAPE 2020, volume 3, issue 1, pp. 320-330

Adam Muc

ORCID ID: 0000-0002-9495-087X

Tomasz Muchowski

ORCID ID: 0000-0002-0200-7041

Gdynia Maritime University, Poland

Albert Zawadzki

ORCID ID: 0000-0002-7516-0100

Polish Naval Academy of the Heroes of Westerplatte, Poland

Adam Szeleziński

ORCID ID: 0000-0003-2842-0683

Gdynia Maritime University, Poland

INTRODUCTION

The growing popularity of remote working requires changes in the network

infrastructure of enterprises. The changes also include the way web

applications, databases and other network services are hosted. In local

networks, in case of port conflicts, web applications and network services are

hosted on separate servers. Separate servers also often host applications that

rely on common dependencies but require different configuration. If enabling

remote access to these services is needed, it may be necessary to perform port

forwarding or equip servers with global IP addresses. If network traffic is allowed

from an external network, the target device must be adequately secured, e.g.

with firewall and antivirus software. This must be done for every device that can

be accessed from an external network. This significantly increases the workload

of the network administrator, as it is his task to maintain the server operating

systems by updating and maintaining the enabled security measures. As the

number of devices available from the external network increases, so does the

probability of security failures and allowing data leakage or violation of the

device's operating system by an unauthorized entity. This problem cannot be

solved by purchasing a VPS server, as port collisions also occur in this case.

The solution to the problem may be the use of virtualization. A virtual machine

has its own operating system and, with an appropriate network configuration it

also has its own IP address in the local network (Portnoy, 2016). Network traffic

can be redirected to virtual machines using port forwarding. Alternatively, the

network cloud, i.e. Amazon AWS, can be used to create virtual machines with

Engineering and Technology 321

global IP addresses, in that case port forwarding is not necessary. However, the

costs of network clouds can be high because the operating systems of each

virtual machine create a resource overhead on the cloud. This situation also

applies to the local server, whose resources will be used by the operating

systems of the virtual machines it maintains. In addition, each of the virtual

machines must be adequately secured so that they are not infected with

malware or taken over by an unauthorized entity (Palmer, 2017; SUSE LLC,

2018).

A better solution may be to containerize the application. Containers create an

isolated environment, but operate on the operating system of the parent device.

Containerization software also allows to create virtual network adapters, which

are used to isolate network connections made by containerized applications

from the parent operating system and parent local network. This means that

containerized applications can use the default network ports without interfering

with other containerized applications if they operate on another virtual network

infrastructure. They also do not interfere with the services of the host operating

system. Virtual networks allow for port forwarding of the virtual network adapter

so that the host operating system can access and share the container-

maintained services on the local and external networks (Dua et. all, 2016;

Poulton, 2017).

Containerization of services and applications completely solves port collisions

and collisions of required configuration of common dependencies. An example

of a containerization program is Docker. It is a program created in 2011 using

Go programming language. Docker has gained a well-deserved popularity in the

last two years and started to be used in many companies dealing with

programming, DevOps and professional maintenance of network services

(Container Journal Website, 2020). However, this software is not difficult to

configure and can also be successfully used in small enterprises without IT

support.

TEST BECH

Test server

The Docker engine can work on both Windows and Linux distributions because

it allows containerization of software for both systems. It is not possible to run

Linux containers natively on Windows and vice versa. The containers are linked

to the operating system and cannot be run on a system incompatible with them

(Nickoloff and Kuenzli, 2019; Poulton, 2017). By default, containers are built for

use in Linux distributions, because containers built this way are more efficient

than their Windows counterparts. The software native to Windows systems can

also be containerized, but must be run on a device with Windows operating

system installed (Stoneman, 2019).

Although native intersystem container use is not possible, Docker for Windows

allows creating a lightweight Hyper-V virtual machine that will support Linux

containers and provide access from the parent system to the opened ports of

322 Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020

the virtual network infrastructure, enabling communication with containerized

applications. However, this is not an efficient solution because it requires

emulation of the Linux kernel in the virtual machine. With the introduction of

WSL2 – Windows Subsystem for Linux 2 (Microsoft Website, 2020) – it is

possible to directly run Linux distributions and share resources with the native

system and control them from Windows. This allows Linux containers to run on

Windows in a WSL2 environment and get performance close to native. This is a

good solution for development and testing environments, but in a production

environment, for stability and native performance reasons, Linux containers

should run on a server with a Linux distribution installed, e.g. Ubuntu Server,

Debian or CentOS (Carter, 2017; Leszko, 2019).

In this case, the authors used WSL2 to test the containerized applications and

check the operation of the created containers. Docker for Windows software can

be downloaded from the manufacturer's website (Docker Documentation, 2020).

After installation it is necessary to configure WSL2 – version 2004 of Windows

10 is required (Microsoft Website, 2020). Created containers can be run natively

on any Linux distribution with support for the docker engine or in case of having

another version of Windows it may be necessary to use Hyper-V. The Figure 1

below shows information about the version of software used by the authors.

Fig. 1 View of Docker version

Test client devices

As client devices, the authors used two computers equipped with the Windows

10 operating system. One of them was both an application server and a client.

In this case the connections were made using a localhost (loopback) address.

Engineering and Technology 323

The second device was located in an external network to simulate requests

coming from the Internet.

WEB APPLICATION CONTAINERIZATION

Standalone application

For testing purposes, the authors created a simple web application in Java using

the Spring framework. The Figure 2 below shows a view of the project directory

structure.

Fig. 2 View of project directory and file structure

In the Figure 3 above a Dockerfile file can be seen – it is a file that contains

instructions for containerization process of the created application. The content

of the Dockerfile is shown in the Figure below.

Fig. 3 View of the Dockerfile

324 Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020

As it can be seen in the figure above, this file contains a description of container

image properties and a series of instructions. This image will be built from the

openjdk:8-jdk-alpine image, because the JRE (Java Runtime Environment) is

required to run an application created in Java. The selected OpenJDK image is

based on the Alpine Linux image. Alpine Linux is a minimalist Linux distribution,

occupying approximately 8MB of space (Alpine Linux Distribution Website,

2020), making it ideal for containerization use. The OpenJDK base image is

open source and publicly available in the docker hub registry. It contains a ready

to use and configured environment for Java applications. The image is then

configured using a series of instructions written in the Dockerfile. A new user

group is added and a new user is placed in it. This user will be used to run the

application in the container. This is an optional step, but it is worth taking care

that the application does not run with administrative privileges, as this may be a

potential security breach. Then an argument is added. The arguments are

variables that can be used in further lines of configuration code. In this case, the

created argument is the path to the *.jar file, which should be placed in the

container. In the next instruction, the file specified by the argument is copied to

the container and saved under the app.jar name. Then the entry point is defined,

which specifies what action the container should perform at the start. In this case

it is going to launch the app.jar file. The created Dockerfile is ready for optimal

test application containerization.

Before containerization, the application must be built, in case of Java

applications, the resulting file is a file with *.jar extension. The Maven tool was

used to build the test application. The next step is to issue a command to create

container image. This operation is shown in the Figure 4 below.

Fig. 4 Process of building container image

Engineering and Technology 325

A container image will be created, which can be used to launch a new container

with the test application. The image list can be displayed using the docker image

list command. The newly created image is only available on the computer on

which it was created. The image can be uploaded the docker hub registry to be

used on other devices as well. However, it is worth mentioning that the docker

hub is publicly accessible to everyone. If the application is intended for specific

company use, it may be necessary to create a private registry. In this case, one

of the authors' account in the docker hub registry was used. The publication of

the image is an optional activity. The created image can be used locally to create

containers. Publication is necessary if containers with the application will be

created on other devices as well, because they must have access to the image

in order to create a container. The following Figure 5 shows the process of

displaying available images, publishing an image and creating a container

based on the created image.

Fig. 5 Creating a container

As it can be seen in the figure above, a container was created and given the

name BussinessAppTest. The application uses port 8080 by default, but the

container's traffic on this port has been redirected to port 80 of the parent

system. This means that the parent system can display the application's network

content because the traffic was redirected to its interface on port 80. As the

containerized application is a web application, a web browser should be used to

display its network content. The following Figure 6 shows an attempt to display

the web content of a containerized web application.

Fig. 6 Test of access to the web application from the server’s web browser

As it can be seen in the Figure above, the network content of the containerized

application is correctly forwarded to the network interface of the parent operating

326 Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020

system. This means that if the server has a public IP address and the firewall is

properly configured, the application is also available on the external network. In

this case, the server does not have a public IP address, but port forwarding was

used to redirect incoming network traffic from the external network to a given

port of the server's network interface. A second test device was placed in the

external network and was used to connect to the router’s DNS address. The

operation is shown in the Figure 7 below.

Fig. 7 Test of access to the web application from the external network

As it can be seen in the figure above, the operation was successful. It means

that the application has been properly containerized and properly isolated from

the parent system.

Application using dependencies

The application from the previous example did not communicate with other

containers and did not have any dependencies like data from the database. The

default virtual network adapter was used, bridging the virtual interface with the

network interface of the parent system.

Applications increasingly require communication with other applications on

which they depend. An example of dependency can be a database. Databases

are maintained by means of applications called DBMS (Data Base Management

System). DBMS can maintain many databases and theoretically can serve data

to many applications simultaneously. However, very often it happens that

applications require DBMS to have a custom configuration or require a specific

version of DBMS. In this case, there is a conflict that requires the network

administrator to reconfigure each application dependent on DBMS so that their

configuration is compatible with each other. However, this is not always

possible, because some applications are not equipped with the option to change

network configuration. In this case the configuration conflict cannot be solved

and it is necessary to install the second DBMS instance in a different location

(on a different server or in a virtual machine). Maintaining multiple servers or

virtual machines, just because the application configuration requires it, is not

optimal. This problem is solved by containerization, because the docker isolates

all containers from each other by default. Creating virtual network adapters

allows the exchange of network data between containers connected to the same

network adapter. This means that the administrator can completely isolate

applications from each other and create separate virtual network adapters for

Engineering and Technology 327

them. Then connect a separate dependency instance for each application to

each virtual network adapter.

The authors have containerized a web application using the MongoDB database

as a dependency. The authors decided to create a virtual network adapter to

which a container with a web application and a container with MongoDB DBMS

was connected. A virtual volume was also created, in which all MongoDB data

will be stored. In case of a DBMS container failure, data from the database will

not be lost and can be read by another container created as a replacement for

the damaged container. The Figure 8 below shows the process of creating a

virtual network adapter, virtual volume for the MongoDB database and launching

containers using the created virtual adapter.

Fig. 8 Creating a virtual network adapter, volume and containers

The creation process must always be verified. The following Figure 9 shows the

process of verifying whether an virtual adapter, volume and containers have

been created.

Fig. 9 View of list of created virtual adapters, volumes and containers

As it can be seen in the figure above, the operation of creating a virtual network

adapter, virtual volume and containers was successful. It should also be noted

that the virtual adapter ports for the DBMS container were not forwarded. This

means that communication with this container is only possible from within the

virtual network infrastructure. This provides complete isolation and guarantees

that only the containerized application can access its dependency.

As the virtual adapter port for the container with the web application has been

forwarded, it is available from the parent operating system. It should be noted

328 Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020

that the application occupies the 8080 port of the parent system and the

application from the first example occupies the 80 port. By default, both

applications work on port 8080 and there would be a collision, but thanks to

containerization and appropriate port forwarding, both applications can work

simultaneously. The following Figure 10 shows a connection test to the

containerized web application.

Fig. 10 Connection test to the containerized application

As it can be seen in the figure above, the application returns the collection

contents from the database. The test application is an application that removes

the collection when the page is loaded, and then creates it again by creating

new documents. Then the data is send and displayed to the user. This is a

typical application testing the correctness of connection to the database and the

functionality of CRUD operations (Create, Read, Update, Delete). The following

Figure 11 shows the source code fragment responsible for testing the database.

Fig. 11 View of virtual tunneling interface configuration

The same Dockerfile as the previous application was used to create an image

of the web application. By using arguments, it is universal for applications

created in Java programming language. By creating an appropriate Dockerfile it

is possible to containerize most application and its dependencies.

CONCLUSION

Containerization consists in isolating the software from applications installed in

the parent operating system. Containerized software does not cause collision of

used network ports and dependency configuration like DBMS configuration.

Appropriate creation of Dockerfile configuration file allows to create container

Engineering and Technology 329

image of most applications. Using the image containers can be created. Images

can be used locally or published to a registry. The Docker Hub is the largest

container registry, but as it is a public registry, use of private registry may be a

better fit for company applications container images.

Software isolation solves the problem of collisions in a simple and cost effective

way. It is better than alternatives such as using virtual machines because virtual

machines create an overhead of used resources by the necessity of having an

operating system installed. This also means extra work with maintenance.

Containerization solves this problem. Containers are also safer to use, as they

do not require separate security features. A well-secured server's host operating

system will prevent the integrity of the containers from being compromised or

data stolen from the containerized application. Due to numerous advantages in

comparison with virtual machines, the containerization technology can be used

in companies that are equipped with servers that host network services.

REFERENCES

Carter, T. (2017) Docker and virtual machines. Independently published
Dua, R. and Kohli, V. and Konduri, S.K. (2016) Learning Docker Networking.

Birmingham: Packt Publishing.
Alpine Linux Distribution Website. About section [online]. Available at:

https://alpinelinux.org/about/ [Accessed 1 June 2020].
Container Journal Website. Using Google trends to chart Docker’s rise to fame [online].

Available at: https://containerjournal.com/features/using-google-trends-chart-
dockers-rise-fame/ [Accessed 1 June 2020].

Docker Documentation. Docker Desktop for Windows [online]. Available at:
https://docs.docker.com/docker-for-windows/install/ [Accessed 1 June 2020].

Microsoft Website. Windows Documentation – WSL2 [online]. Available at:
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index [Accessed 1 June
2020]

Leszko, R. (2019) Continuous Delivery with Docker and Jenkins, 2nd Edition.
Birmingham: Packt Publishing.

Nickoloff, J. and Kuenzli, S. (2019) Docker in Action, 2nd Edition. Manning Publications.
Palmer, M. (2017) Hands-On Microsoft Windows Server 2016, 2nd Edition. Boston:

Cengage Learning.
Portnoy, M. (2016) Virtualization Essentials, 2nd Edition. New York: Sybex.
Poulton, N. (2017) Docker Deep Dive. Independently published.
Stoneman, E. (2019) Docker on Windows, 2nd Edition. Birmingham: Packt Publishing.
SUSE LLC (2018) SUSE Linux Enterprise Server 12 - Virtualization Guide. Suwanee:

12th Media Services.

330 Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020

Abstract: Businesses are increasingly confronted with server-related problems.
More and more, businesses are enabling remote working and need to rely on network
services. The provision of network services requires rebuilding the network
infrastructure and the way employees are provided with data. Web applications and
server services use common dependencies and require a specific network
configuration. This often involves collisions between network ports and common
dependencies' configuration. This problem can be solved by separating the
conflicting applications into different servers, but this involves the cost of maintaining
several servers. Another solution may be to isolate applications with virtual machines,
but this involves a significant overhead on server resources, as each virtual machine
must be equipped with an operating system. An alternative to virtual machines can
be application containerization, which is growing in popularity. Containerization also
allows to isolate applications, but operates on the server's native operating system.
This means eliminating the overhead on server resources present in virtual
machines. This article presents an example of web application containerization.

Keywords: remote work, server services, containerization, Docker, server costs

