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INTRODUCTION 

Buckling is a classic mechanical problem, the concept of which was introduced 

by Euler (Euler, 1744). Over the years, buckling analysis has found wide 

application, including in civil engineering (Śledziewski & Górecki, 2020; Toledo 

et al., 2020), mechanical engineering (Czechowski et al., 2020; Kubit et al., 

2019) or the maritime industry (Corigliano et al., 2019; Shen et al., 2020). 

Currently, there is a renewed interest in buckling, in particular in applications in 

composite structures (Rozylo et al., 2020; Schilling & Mittelstedt, 2020; Xu & 

Wu, 2008) or micro and nano technologies (Barretta et al., 2019; Chandra et al., 

2020). A large number of industrial applications and scientific research (Li & 

Batra, 2013; Nistor et al., 2017) of buckling analysis have resulted in the 

development of buckling modeling methods.  

In (Harvey & Cain, 2020) authors investigated column behavior if member 

imperfection and load eccentricity are simultaneously present. Authors analyzed 

pinned members assuming linearly elastic, slender, uniform, and inextensible 

columns. To compare the relative significance of member imperfections and 

load eccentricity on the deflected shape a linear analysis based on Euler-

Bernoulli theory was performed. The obtained results were experimentally 

validated using additively manufactured specimen. Additive manufacturing 

ensured accurate seeding imperfections to control, specimens buckling 

characteristics. A series of initially imperfect specimens with eccentric load 

application points were tested, exhibiting imperfection amplification and 

cancellation. Authors stated that good agreement between the theoretical 

predictions and the experimental results was observed. 

In (Zhu et al., 2017) author presented, an analytical study on the buckling 

problem of nonlocal Euler-Bernoulli beams using Eringen’s two-phase nonlocal 



58        Multidisciplinary Aspects of Production Engineering – MAPE vol. 3, issue 1, 2020 

integral model (Eringen, 2002). Authors deduced the exact characteristic 

equation for the buckling loads, by the reduction method. In addition, a simple 

and explicit expressions of the buckling loads for four-type boundary conditions 

was developed. Authors proved that adopted nonlocal integral model has a 

consistent softening, in contrast to the nonlocal differential model. Authors 

stated that in comparison with differential model and the pure nonlocal model, 

the integral model considered advantages of well-posedness and self-

consistency. In addition, the established analytical formulae may be useful in 

providing guidelines for designing structures with nonlocal effect, since they 

contain the nonlocal parameter explicitly. 

In (Su et al., 2019) authors presented a finite prebuckling deformation (FPD) 

buckling theory to analyze the FPD buckling behaviors of beams with the 

coupling of bending, twist and stretch/compression. To verify the correctness of 

the proposed theory, it was compared with various analytical and numerical 

methods of modeling the transverse buckling of a three-point bending beam, 

lateral buckling of pure beam bending and Euler buckling. In result, it was stated 

than proposed FPD buckling theory for beams is able to give a good prediction, 

while the conventional buckling theory (Timoshenko & Gere, 2009) and 

conventional numerical method (Dassault-Systèmes, 2010) yield unacceptable 

results (in some cases with 70% error for a three-point-bending beam). 

In (Nikolić & Šalinić, 2017) authors presented a method of buckling analysis of 

non-prismatic columns based on rigid element method. Authors derived a 

general form of the characteristic equation, which enabled to perform buckling 

analysis of columns with continuously varying, doubly symmetric cross-section 

and multiple-stepped columns under different boundary conditions. The 

proposed method was verified through numerical examples. Authors concluded 

that results obtained on the basis of presented method have a high rate of 

convergence to the other results from the literature. 

Summing up the presented review of buckling analysis methods, it can be stated 

that despite the fact that buckling is a classic problem of mechanics, researchers 

are constantly proposing new approaches to solve this problem, as a result of 

which they determine the values characterizing buckling. One such approach is 

proposed in this article. Presented approach deals with the problem determining 

specific buckling amplitude of straight and bent bar, where it is considered as a 

function of axial displacement of one end of the bar. The main novelty is that 

assumption that the length of a buckled bar at any instant of buckling is the same 

as that of a straight bar, regardless of the size of axial displacement of one end 

of the bar. A formula for the value of axial displacement of one bar end or 

buckling amplitude in the middle of bar length as a function of compressive force 

was derived – based on energy equations. The proposed method was validated 

for bars with different cross-section dimensions by comparing results obtained 

on its basis with finite element model results and experimental tests. 

The structure of the article is as follows: in Section 2, the proposed method of 

determining axial displacement of one bar end or buckling amplitude in the 

https://www.sciencedirect.com/topics/engineering/rate-of-convergence
https://www.sciencedirect.com/topics/engineering/rate-of-convergence
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middle of bar length presented. Next, the results obtained on the basis of 

presented method are compared to finite element model and experimental test 

results. In Section 4, a discussion of the results obtained is provided. Section 5 

contains the final conclusions that summarize the most important achievements 

of the article. 

 

METHODOLOGY OF RESEARCH  

Euler bar buckling 

Bending a bar caused by exceeding a critical value of axial compressive force 

is called buckling. The value of this critical force was determined by Euler 

(Bedford & Liechti, 2020; Euler, 1744; Gere & Goodno, 2009; Timoshenko & 

Gere, 2009). He considered the equilibrium of a bent bar (Fig. 1). 

 

 
Fig. 1 Equilibrium of a bent bar, E – Young modulus, J – axial moment  

of inertia of bar cross-section, L0 – initial length of straight bar 

 

Solving the differential equation, Euler derived a well-known formula for the 

value of critical force: 

𝑃 =
𝜋2𝐸𝐽

𝐿0
2          (1) 

The bent axis of the bar is a sinusoid: 

𝑦(𝑥) = 𝐴 ⋅ 𝑠𝑖𝑛   (
𝜋𝑥

𝐿0
)        (2) 

Amplitude A at the bar half-length can be written: 

𝑦  (
𝐿0

2
) = 𝐴         (3) 

However, a specific value of amplitude A at such approach to buckling cannot 

be determined. 

 

Model of straight bar buckling under axial displacements  of one end of 

the bar 

The article aims to determine the course of axial displacement  of one bar end 

(or amplitude A of buckling, measured at half-length of the bar) as the function 

of axial compressive force P. A model of buckling due to axial displacements  

of one bar end is presented (Fig. 2). It can be compared to a bar placed in the 

closing jaws of a vice. Axial forces occur then as reaction forces in the supports 

(jaws). 
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Fig. 2 Buckling of a bar with a specific initial length L0 at preset axial 

displacement δ of one end 

 

It was assumed that the bent bar has a shape of a sinusoid with amplitude A, at 

a length between the supports shortened by displacement δ: 

𝑦(𝑥) = 𝐴 ⋅ 𝑠𝑖𝑛   (
𝜋⋅𝑥

𝐿0−𝛿
)        (4) 

To determine the relationship between amplitude A and a preset axial 

displacement δ, we need to know the formula for the length of the sinusoid. The 

sinusoid length for each value must be equal to the initial straight bar length L0. 

The length of the sinusoid cannot be determined by elementary functions. A 

precise formula for the length of the sinusoid: 

𝐿0 = 2 ⋅ 𝑎 ⋅ 𝐸 (𝑒2)        (5) 

where: 

E is a complete elliptic integral of the second kind, e is an eccentricity of an 

ellipse. 

Elliptic integrals were encountered while calculating the ellipse circumference, 

hence their name. The term refers to integrals that cannot be expressed by 

elementary functions. We can imagine a sinusoid as an expansion of an ellipse 

formed by an intersection of a cylinder by a plane at a certain angle to the axis 

and passing through the diameter of this cylinder (Fig. 3a) (Czechowski et al., 

2020; Kubit et al., 2019). 

Half of the ellipse circumference is the sinusoid length. An approximate formula 

for ellipse length L: 

𝐿 ≈ 𝜋 ⋅ (
3

2
⋅ (𝑎 + 𝑏) − √𝑎 ⋅ 𝑏)       (6) 

where: 

a, b are a semi-axes of an ellipse. 

It follows from Figure 3b that 

𝑦(𝑥) = 𝑎 ⋅ 𝑠𝑖𝑛 𝛼 ⋅ 𝑡𝑎𝑛 𝛾        (7) 

where: 

a is a smaller minor semi-axis, equal to the radius of the cylinder from which the 

ellipse is expanded,  

γ is a dihedral angle between the ellipse plane and a plane perpendicular to the 

cylinder axis. 
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(a) 

 
(b) 

Fig. 3 (a) An ellipse formed by intersection of a cylinder by a plane at a certain 
angle to the cylinder axis, passing through the diameter of this cylinder;  

(b) relationships between a cylinder with diameter 2·a and an ellipse  
with semi-axes and a sinusoid with an amplitude A 

 

As the minor semi-axis a and the dihedral angle γ are constant, equation y(x) represents 

a sinusoid. It follows from Figure 3b that the minor semi-axis a of the ellipse equals the 

radius of the cylinder with circumference length 2·Lδ: 

2 ⋅ 𝐿𝛿 = 2 ⋅ (𝐿0 − 𝛿) = 𝜋 ⋅ 2 ⋅ 𝑎 → 𝑎 =
𝐿0−𝛿

𝜋
     (8) 

The major semi-axis b results from the initial length L0 of the bar, equal to half 

the circumference of the ellipse: 

𝐿0 =
𝜋

2
⋅ (

3

2
⋅ (𝑎 + 𝑏) − √𝑎 ⋅ 𝑏)       (9) 

In further steps, the attention will be focused on the determination of the major 

axis b from the above equation. After simple transformations: 
2⋅𝐿0

𝜋
=

3

2
⋅ 𝑎 +

3

2
⋅ 𝑏 − √𝑎 ⋅ 𝑏       (10) 

−
2⋅𝐿0

𝜋
+

3

2
⋅ 𝑎 +

3

2
⋅ 𝑏 = √𝑎 ⋅ 𝑏       (11) 

we temporarily adopt a constant value D: 

𝐷 = −
2⋅𝐿0

𝜋
+

3

2
⋅ 𝑎        (12) 

Then 

(𝐷 +
3

2
⋅ 𝑏)

 2
= 𝑎 ⋅ 𝑏        (13) 

We remove the brackets: 

𝐷2 + 2 ⋅ 𝐷 ⋅
3

2
⋅ 𝑏 +

9

4
⋅ 𝑏2 = 𝑎 ⋅ 𝑏      (14) 

to get a square trinomial: 
9

4
⋅ 𝑏2 + (3 ⋅ 𝐷 − 𝑎) ⋅ 𝑏 + 𝐷2 = 0      (15) 

The discriminant of the trinomial: 

𝛥 = (3 ⋅ 𝐷 − 𝑎)2 − 4 ⋅
9

4
⋅ 𝐷2 = 𝑎2 − 6 ⋅ 𝐷 ⋅ 𝑎     (16) 

The roots b1,2 of the equation 

𝑏1,2 =
−(3⋅𝐷−𝑎)±√𝑎2−6⋅𝐷⋅𝑎

2⋅
9

4

       (17) 

After the rejection of the unreal solution, the only real solution is 

𝑏 =
−6⋅𝐷+2⋅𝑎+2⋅√𝑎2−6⋅𝐷⋅𝑎

9
       (18) 

Replacing D by the previous value, we get 
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𝑏 =
−6⋅(−

2⋅𝐿0
𝜋

+
3

2
⋅𝑎)+2⋅𝑎+2⋅√𝑎2−6⋅(−

2⋅𝐿0
𝜋

+
3

2
⋅𝑎)⋅𝑎

9
     (19) 

After the reduction of the brackets: 

𝑏 =

12⋅𝐿0
𝜋

−7⋅𝑎+2⋅√
12⋅𝐿0⋅𝑎

𝜋
−8⋅𝑎2

9
       (20) 

The final form of the major semi-axis b expressed by the minor semi-axis a: 

𝑏 =
4⋅𝐿0

3⋅𝜋
−

7

9
⋅ 𝑎 +

2

9
⋅ √

12⋅𝐿0⋅𝑎

𝜋
− 8 ⋅ 𝑎2      (21) 

We substitute for a: a = (L0 − δ)/π 

𝑏 =
4⋅𝐿0

3⋅𝜋
−

7

9
⋅

𝐿0−𝛿

𝜋
+

2

9⋅𝜋
⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 𝛿 − 8 ⋅ 𝛿2    (22) 

We introduce the least common denominator: 

𝑏 =
5⋅𝐿0

9⋅𝜋
+

7

9
⋅

𝛿

𝜋
+

2

9⋅𝜋
⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 𝛿 − 8 ⋅ 𝛿2    (23) 

and obtain the final formula for the major semi-axis of the ellipse as the function 

of one variable δ: 

𝑏 =
1

9⋅𝜋
(5 ⋅ 𝐿0 + 7 ⋅ 𝛿 + 2 ⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 𝛿 − 8 ⋅ 𝛿2)   (24) 

If δ = 0 then b = L0/π, i.e. the two semi-axes a and b are equal and the ellipse 

becomes a circle. The other root of the square trinomial would be b = L0/(9π) 

unrealistic, as the major semi-axis b would be smaller than the minor semi-axis 

a. 

The sinusoid amplitude is expressed by the formula (Fig. 3b): 

𝐴 = √𝑏2 − 𝑎2         (25) 

𝐴 = √[
1

9⋅𝜋
(5 ⋅ 𝐿0 + 7 ⋅ 𝛿 + 2 ⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 𝛿 − 8 ⋅ 𝛿2)]
 2

− (
𝐿0−𝛿

𝜋
)

2
 (26) 

The ultimate equation of the sinusoid: 

𝑦(𝑥) = 𝐴 ⋅ 𝑠𝑖𝑛 (
𝜋⋅𝑥

𝐿𝛿
)        (27) 

By knowing the sinusoid equation, we can determine the elastic energy US 

accumulated in the bar (Shen et al., 2020): 

𝑈𝑆 =
1

2
∫ 𝐸 ⋅ 𝐽 ⋅ 𝑦″2𝑑𝑥

𝐿𝛿

0
        (28) 

replacing: 

𝜔 =
𝜋

𝐿𝛿
          (29) 

𝑦(𝑥) = 𝐴 ⋅ 𝑠𝑖𝑛(𝜔 ⋅ 𝑥)        (30) 

𝑦 ′(𝑥) = 𝐴 ⋅ 𝜔 ⋅ 𝑐𝑜𝑠   (𝜔 ⋅ 𝑥)       (31) 

𝑦″(𝑥) = −𝐴 ⋅ 𝜔2 ⋅ 𝑠𝑖𝑛   (𝜔 ⋅ 𝑥)       (32) 

Elastic energy US in the bar caused by bending: 

𝑈𝑆 =
1

2
∫ 𝐸 ⋅ 𝐽 ⋅ 𝑦″2𝑑𝑥

𝐿𝛿

0
=

1

2
∫ 𝐸 ⋅ 𝐽 ⋅ 𝐴2 ⋅ 𝜔4 ⋅ 𝑠𝑖𝑛2(𝜔 ⋅ 𝑥) ⥂  𝑑𝑥

𝐿𝛿

0
=

𝐸⋅𝐽⋅𝐴2⋅𝜔4

2
∫ 𝑠𝑖𝑛2(𝜔 ⋅

𝐿𝛿

0

𝑥) ⥂  𝑑𝑥 = =
𝐸⋅𝐽⋅𝐴2⋅𝜔3

2
⋅

1

2𝜔
⋅ [𝜔 ⋅ 𝑥 − 𝑠𝑖𝑛(𝜔 ⋅ 𝑥) ⋅ 𝑐𝑜𝑠(𝜔 ⋅ 𝑥)]0

𝐿𝛿(33) 

𝑈𝑆 =
𝐸⋅𝐽⋅𝐴2⋅(

𝜋

𝐿𝛿
)

3

4
⋅ [

𝜋

𝐿𝛿
⋅ 𝑥 − 𝑠𝑖𝑛 (

𝜋

𝐿𝛿
⋅ 𝑥) ⋅ 𝑐𝑜𝑠 (

𝜋

𝐿𝛿
⋅ 𝑥)]

0

𝐿𝛿
=

𝐸⋅𝐽⋅𝐴2⋅𝜋4

4⋅𝐿𝛿
3   (34) 

An increment of elastic energy ΔUS accumulated in the bar along with an 

increment of displacement Δδ is equal to work ΔUp of the external compressive 

force P over a distance of axial increment of displacement Δδ: 
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𝛥𝑈𝑆 = 𝛥𝑈𝑃         (35) 
𝐸⋅𝐽⋅𝜋4

4
⋅ (

𝐴𝛿
2

𝐿𝛿
3 −

𝐴𝛿−𝛥𝛿
2

𝐿𝛿−𝛥𝛿
3 ) = 𝑃 ⋅ 𝛥𝛿       (36) 

Hence the value of the compressive force P: 

𝑃 =
𝐸⋅𝐽⋅𝜋4

4
⋅ (

𝐴𝛿
2

𝐿𝛿
3 −

𝐴𝛿−𝛥𝛿
2

𝐿𝛿−𝛥𝛿
3 ) ⋅

1

𝛥𝛿
= 𝐶 ⋅ (

𝐴𝛿
2

𝐿𝛿
3 −

𝐴𝛿−𝛥𝛿
2

𝐿𝛿−𝛥𝛿
3 ) ⋅

1

𝛥𝛿
    (37) 

where the constant C: 

𝐶 =
𝐸⋅𝐽⋅𝜋4

4
         (38) 

The verifying calculations were made for the following theoretical data: L = 750 mm,  

E = 2.07·105 MPa, J = 1250 mm3 

𝑃kr =
𝜋2𝐸𝐽

𝐿2 = 4540 𝑁  (Euler)       (39) 

The calculations of the previously discussed quantities a, b, A, US, P were made, 

depending on the stepwise changing value of the axial displacement δ. At the 

start of the compression, the bar was perfectly straight. The results of the 

calculations are contained in Table 1. 

 
Table 1 The values a, b, A, US, P depending on the stepwise variable value  

of the axial displacement δ 

Displacement 
Minor  
axis 

Major  
axis 

Sinusoid  
amplitude 

Elastic  
energy 

Force 
compressing  

initially straight  
bar 

d [Nm] a [Nm] b [Nm] A [Nm] US [Nmm] P [N] 

0 238.7324 238.7324 0.00 0 0 

0.00114 238.7321 238.7328 0.59 5 4540 

0.00228 238.7317 238.7331 0.83 10 4540 

0.00342 238.7313 238.7335 1.02 16 4540 

0.00456 238.7310 238.7339 1.18 21 4540 

0.0057 238.7306 238.7342 1.32 26 4540 

0.00684 238.7302 238.7346 1.44 31 4540 

0.00798 238.7299 238.7350 1.56 36 4540 

0.00912 238.7295 238.7353 1.66 41 4540 

0.01026 238.7291 238.7357 1.77 47 4540 

0.0114 238.7288 238.7360 1.86 52 4540 

0.01254 238.7284 238.7364 1.95 57 4540 

0.01368 238.7281 238.7368 2.04 62 4540 

0.01482 238.7277 238.7371 2.12 67 4540 

0.01596 238.7273 238.7375 2.20 72 4541 

0.0171 238.7270 238.7379 2.28 78 4541 

0.01824 238.7266 238.7382 2.35 83 4541 

0.01938 238.7262 238.7386 2.43 88 4541 

0.02052 238.7259 238.7389 2.50 93 4541 

 

The diagram of axial displacement δ as the function of axial compressive force 

P for this case is presented in Figure 4a. 

This is a vertical line intersecting the horizontal axis (axis of force) at the critical 

force value according to Euler. The amplitude A graph at half-length of the bar 

perpendicular to the bar axis as the function of the axial compressive force P for 

this case is presented in Figure 4b. 
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Fig. 4 Axial displacements δ of bar end (a) and the graph of amplitudes  

A = A(δ) of the bar buckling at the bar half-length (b) as the function  
of axial compression force P 

 

It is also a vertical line intersecting the horizontal axis at the identical value of 

the critical force according to Euler. Analytically, the value of this asymptote can 

be easily expressed by the formula obtained by the substitution to force P of a 

small value of displacement equal to, e.g. 

δ = 0.01 mm = 1·10−5·L0 mm       (40) 

The minor semi-axis: 

𝑎 =
𝐿0−𝛿

𝜋
=

𝐿0−1⋅10−5⋅𝐿0

𝜋
=

0.99999

𝜋
⋅ 𝐿0      (41) 

The major semi-axis: 

𝑏 =
1

9⋅𝜋
(5 ⋅ 𝐿0 + 7 ⋅ 𝛿 + 2 ⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 𝛿 − 8 ⋅ 𝛿2)   (42) 

𝑏 =
1

9⋅𝜋
(5 ⋅ 𝐿0 + 7 ⋅ 10−5 ⋅ 𝐿0 + 2 ⋅ √4 ⋅ 𝐿0

2 + 4 ⋅ 𝐿0 ⋅ 10−5 ⋅ 𝐿0 − 8 ⋅ (10−5 ⋅ 𝐿0)2)(43) 

𝑏 =
1.00001

𝜋
⋅ 𝐿0         (44) 

Amplitude A: 

𝐴 = √𝑏2 − 𝑎2 =
𝐿0

𝜋
⋅ 0.006325       (45) 

𝑃 =
𝐸⋅𝐽⋅𝐴2⋅𝜋4

4⋅𝐿𝛿
3 ⋅𝛿

=
𝜋4⋅𝐸⋅𝐽⋅𝐿0

2 ⋅0.006325 2

𝜋2⋅4⋅0.999993⋅𝐿0
3 ⋅0.00001⋅𝐿0

=
𝜋2⋅𝐸⋅𝐽

𝐿0
2 ⋅

4⋅10−4

4⋅10−4    (46) 

𝑃 =
𝜋2⋅𝐸⋅𝐽

𝐿0
2          (47) 

The above value is identical to the value of the critical force determined by the 

Euler formula. Therefore, a graph of axial displacement δ of one bar end was 

obtained as the function of axial compression force P as well as a graph of 

buckling amplitude A at bar half-length as the function of the axial compression 

force P, which was the objective of this article. 

 

Model of bent bar buckling under axial displacements  of one end of the 

bar 

If we assume the bar is initially bent A(δ0), which can be regarded as initial 

displacement δ0 of the bar end by value δ0 (Fig. 5) (we omit elastic strains 

caused by compressive stresses), then the elastic energy of the strain US 

caused by further movement of the bar end must be expressed by the difference 

of amplitudes A = A(δ) – A(δ0) (Fig. 5). 
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Fig. 5 Preliminary bending of the bar due to initial displacement  

of bar end by value δ0 

 

𝑈𝑆 =
𝐸⋅𝐽⋅(𝐴(𝛿)−𝐴(𝛿0))

2
⋅𝜋4

4⋅𝐿𝛿
3         (48) 

and the value of the compressive force P: 

𝑃 = 𝐶 ⋅ (
[𝐴(𝛿)−𝐴(𝛿0)]2

𝐿𝛿
3 −

[𝐴𝛿−𝛥𝛿−𝐴(𝛿0)]2

𝐿𝛿−𝛥𝛿
3 ) ⋅

1

𝛥𝛿
     (49) 

This case of buckling was calculated for the initial value of the bar end 

displacement δ0 according to Table 2. 

 
Table 2 Initial values δ0 of the bar end displacement and the corresponding initial 

amplitude A(δ0) of the bar bent at half-length. Δδ – stepwise displacement of bar end 

Initial displacement 
of bar end [mm] 

Initial bending of the bar  
at its half-length [mm] 

Stepwise displacement 
of bar end [mm] 

δ0 A(δ0) Δδ 

0.00002850 0.0931 0.00002850 

0.002850 0.931 0.002850 

0.01425 2.08 0.00285 

0.03135 3.09 0.00285 

 

The results of the calculations for four initial displacements δ0 of the bar end 

according to Table 2 are presented in Figures 9 and 10. 

 

A simplified buckling model of a bent bar 

In this approach only buckling amplitudes are considered. This method of 

determining the critical force is commonly used in lab classes on buckling 

(Buczkowski & Banaszek, 2006). The amplitude increment in a bar A = A(δ) – 

A(δ0) initially bent at its half-length by a value A(δ0) is determined with sufficient 

accuracy by means of the approximate formula (Buczkowski & Banaszek, 

2006): 
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𝐴 = 𝐴(𝛿) − 𝐴(𝛿0) =
𝐴(𝛿0)

𝑃𝑘𝑟
𝑃

− 1       (50) 

Hence 

𝑃 =
𝑃𝑘𝑟

𝐴(𝛿0)

𝐴(𝛿)−𝐴(𝛿0)
+1

         (51) 

The graph of this approximate value of amplitude A = A(δ) – A(δ0) increment as 

the function of axial compressive force P is presented for A(δ0) = 0.59 mm in 

Figure 8a. 

 

Finite element model 

Simulation calculations were made using the Midas NFX 2018 R1 preprocessor 

(Midas Information Technology Co. Ltd., Seongnam, Korea) (Midas, 2011) 

computer program based on the finite element method. The modeled bar had 

dimensions as given in the previous section. The one-dimensional finite beam 

elements (CBEAM) were used. The finite element model was composed of 81 

nodes and 80 elements. The bar ends were modeled as hinged support, and 

one end had a preset axial displacement δ = −1mm (Fig. 6). 

 

 
Fig. 6 Diagram of the computer model of a compressed bar 

 

The non-linear static module (SOL 106) was used for the calculations. Further 

in this study the initial axial displacement δ was calculated according to Table 2. 

The simulation results are shown in Figures 8 to 10, denoted by FEM (Finite 

Element Method). 

 

Experimental tests 

Experimental buckling tests were conducted for a steel bar with dimensions as 

given in the previous section. The initial amplitude A0 was 0.59 mm. The value 

P of the axial force compressing the bar and amplitude A of buckling measured 

with a micrometer at bar half-length perpendicularly to the bar axis (Fig. 7). 
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Fig. 7 A bar examined for buckling on a strength tester FM 2500 

 

The experiment results are given in Figure 8. 

 

 
(a) 

 

 
(b) 

Fig. 8 (a) Buckling amplitudes A as a function of compressive forces acting on a bar 
750 mm in length, rectangular cross-section 10 x 15 mm, initial buckling amplitude  

A0 = 0.59 mm; (b) axial displacements of bar end δ as a function of compressive forces 
acting on a bar 750 mm long, rectangular section 10 x 15 mm, initial value of axial 

displacement δ0 = 0.00114 mm 
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Fig. 9 Analytical and simulation graphs of buckling amplitudes A as a function of 

compressive forces acting on a bar 750 mm in length, rectangular cross-section 10 x 15 
mm, various amplitudes A0 of initial bending 

 

 
Fig. 10 Analytical and simulation graphs of axial displacement δ as a function of axial 

compression forces, acting on a bar 750 mm in length, rectangular section 10 x 15 mm, 
for various amplitudes A0 of initial bending 

 

DISCUSSION  

Summarizing the research presented in this article, the experimental studies 

show, that: 

• In a wide range of straight bar end axial displacement δ (Fig. 4a) and 

amplitudes A (Fig. 4b) the compressive force P is constant and equal to 

Euler’s critical force (Euler, 1744; Timoshenko & Gere, 2009); 

• The more the bar is bent at the initial compression stage, the more flattened 

are the graphs illustrating axial displacement δ (Fig. 10) and buckling 

amplitude A (Fig. 9); 

• The asymptotic character of axial displacement δ of a straight bar end A 

(Fig. 10) and its amplitudes A (Fig. 9) as the function of axial compression 

forces is evident for compressive forces close to the value of Euler's critical 

force; 
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• The amplitude graphs differ slightly for the four methods: analytical, 

simulation, approximate and experimental (Fig. 8a); 

• The analytical and simulation graphs of axial displacements δ of the bar end 

(Fig. 3a) are significantly different in the first phase of compression, but they 

have a joint asymptote; 

• The conformity of amplitude A graphs (Fig. 9) as a function of axial 

compressive forces obtained by three methods confirms the correct 

approach to the bar buckling problem by considering the axial displacement 

of one end of the bar. 

 

CONCLUSIONS 

Presented article deals with the problem of straight and bent bar buckling, where 

bar buckling is considered as a function of axial displacement of one end. Owing 

to the derived formula it was possible to determine a specific value of amplitude 

A, which is not possible using Euler method. Obtained results (buckling 

amplitude and axial displacement of bar end for bars with different cross-section 

dimensions.) show high agreement with FEM analysis and experimental results. 
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Abstract: A new approach has been taken to the problem of straight and bent bar 
buckling, where bar buckling is considered as a function of axial displacement of one 
end. It was assumed that the length of a bar being buckled at any instant of buckling 
is the same as that of a straight bar, regardless of the size of axial displacement of 
one end of the bar. Based on energy equations, a formula was derived for the value 
of axial displacement of one bar end or buckling amplitude in the middle of bar length 
as a function of compressive force. The established relationships were confirmed by 
simulation tests using the finite element software Midas NFX and by experimental 
tests. 
 
Keywords: buckling, Euler buckling, straight bar, bent bar, critical force 

 


