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INTRODUCTION 

The strain state in every point of a part is characterized by the relative linear 

deformations εx, εy, εz, while the stress state is determined by σx, σy, σz (Ivanova, 

2016; 2018; 2019; Ivanova et al. 2019; Zakharov et al. 2016; Tyutha et al. 2016; 

Zitnansky et al. 2013; Davim 2011; 2013; Grote 2011; Fritz & Schulze 2010; 

Klocke & Konig 2013, Klocke & Kuchle 2011; Groover 2010; Boge 2011; Huo & 

Cheng 2013; Jackson & Hitchiner 2012; Rowe 2010; Toenshoff & Denkena 

2013). Let us analyze two cases of part installation and fastening. In the first 

scheme of fastening, the plate with width h is machined along its free surface, 

the plate cannot expand in the directions of the x and z coordinates during 

processing, i.e. the plate is fixed at the edges, for example, at convergent prisms 

of a vice. In the second scheme of fastening, the plate is installed on the 

magnetic base; holding forces in direction of planes are absent, i.e. deformation 

is not limited by anything. 

 

ORGANIZATION OF THE TEXT 

For the first fastening scheme εx = εz = 0, so during heating the part will expand 

only in direction of у – axis. The deformation will be: 

𝜀𝑦 =
3𝛼𝑝𝑞

√𝜋𝑎𝜏с𝜌
𝑒𝑥𝑝 [−

𝑦2

4𝑎𝜏
]        (1) 

where: 
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a – thermal diffusion coefficient;  

с – specific heat capacity;  

τ – time of contact;  

αр – linear expansion coefficient;  

ρ – density of machined material.  

The intensity of deformations during uploading is determined the following way: 

𝜀𝑖 =
√2

3
√(𝜀𝑦 − 𝜀𝑥)

2
+ (𝜀𝑥 − 𝜀𝑧) 2 + (𝜀𝑧 − 𝜀𝑦)

2
     (2) 

As for the first scheme, εx = εz = 0, the intensity of deformation is 

𝜀𝑖 𝑙𝑜𝑎𝑑 =
√2

3
√2𝜀𝑦

2 =
2

3
|𝜀𝑦| =

2𝛼𝑝𝑞

√𝜋𝑎𝜏 с𝜌
𝑒𝑥𝑝 [−

𝑦2

4𝛼𝜏
] = 2𝛼𝑝𝜃   (3) 

The intensity of de formations under constant linear expansion coefficient αр 

occurs to be directly proportional to the temperature of the point θ. The start of 

unloading in the given point coincides with the moment of reaching maximum 

temperature. For the start of unload in git is typical that 
𝜕𝜀𝑖

𝜕𝜏
= 0, the stress 

intensity in this point is described by equation (3). Hence 
𝜕𝜀𝑖

𝜕𝜏
=

𝜕

𝜕𝜏
(2𝛼𝑝𝜃) = 2   𝛼𝑝

𝜕𝜃

𝜕𝜏
= 0      (4) 

As αр ≠ 0,  so  
𝜕𝜃

𝜕𝜏
= 0. 

Considering that maxima of temperature 𝜃  and deformation intensity εi are 

reached simultaneously, the start of unloading is determined given that: 

𝜕𝜀𝑖

𝜕𝜏
= 0 or 

𝜕𝜀𝑖
𝑝

𝜕𝜏
= 0 

It is well-known that 𝜀𝑖 = 𝜀𝑖
𝑒 + 𝜀𝑖

𝑝
 

where: 

𝜀𝑖
𝑝
 – plastic component of deformation; 

𝜀𝑖
𝑒 – elastic component of the full intensity of deformation. 

The elastic component of deformation for points where it occurs during 

uploading period, when the intensity of residual stresses is σi ≥ σ0,2, can be found 

according the equation: 

𝜀𝑒 =
2(1 + 𝜇)

3𝐸
,    𝜎𝑖 =

2

3
(1 + 𝜇)

𝜎0,2

𝐸
 

where: 

μ – Poisson's ratio;  

Е – elastic modulus;  

σ0,2 – yield strength of machined material.  

The dashed line on the Fig. 1 shows how deformation which corresponds to 

yield strength σ0,2 changes with the temperature. The ratio 
𝜎0,2

Е
 drops with 

temperature increase and reaches its minimum under 𝜃𝑚𝑎𝑥 in every point, i.e. 

under  
𝜕𝜃

𝜕𝜏
= 0.  𝜀𝑖𝑚𝑎𝑥  and 𝜀𝑖𝑚𝑎𝑥

𝑝
 occur at the same time (Fig. 1). The change in 

stress over time is shown in Fig. 2.  
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Fig. 1 Dependence of plastic and elastic components of deformation intensity on time 

 

 
Fig. 2 Dependence of stress at the point of the part on time 

 

To find the moment when the temperature reaches its peak at every point and 

to determine the time of unloading start, we equate the time derivative of the 

temperature to zero 

∂θ

∂τ
=

∂

∂τ
(

q

√πλτсρ
e− 

y2

4aτ) = 0;  
∂

∂τ
(

е
− 

y2

4aτ

√τ
) = 0     (4) 

According to equation (4), the value of heats our ceintensity q does not exert 

any influence on the position of the moments of unloading start. 

To determine the moment of unloading start we find the partial derivative 
∂θ

∂τ
 and 

set it equal to zero: 

∂

∂τ
(

e− 
y2

4aτ

√τ
) =

e− 
y2

 4aτ

√τ
+

y2

4aτ2
−

e− 
y2

4aτ

2√τ3
= 0 

As  τ ≠ 0  and e−
y2

4aτ  ≠ 0, it can be assumed that  
y2

4aτ2 −
1

2τ
= 0, or  

y2

2aτ
= 1. 

The expression for the start of unloading: 

τunload =
y2

2a
         (5) 

Consequently, unloading does not start simultaneously in points of different 

depth of the part. It was established that for each moment of unloading start and 

for each point of the depth of the part there is separate pattern of unloading, 

which is similar to Figure 2. 

By inserting the value τ unload into equation (3), we obtain the value of the 

maximum deformation intensity at the time of unloading. After the 

transformations we get 

0    
⧫    

σ    ő    

θ    

d    θ    
d    τ    

σ    0    ,    2    

θ    ,    
σ    

=    0    


 
 
 
 

ĺ  
  

i  
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i  
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εi max = 2√
2

πe
− 

y2

4aτ

αpq

cρ
∙

1

yl
       (6) 

Equation (6) represents the equation of the equilateral hyperbola. If we draw a 

curve εimax = f(y) and add to this graph a deformation intensity curve εi(0,2), which 

corresponds to the yield strength of the material, the zones of plastic and elastic 

deformations can be distinguished (Fig. 3). 

 

 
Fig. 3 Scheme for determining the depth of the plastic deformation zone:  

I – zone of a plastic deformation, II – zone of an elastic deformation 

 

An area, hatched by vertical lines, represents a zone of maximum primary plastic 

deformations, which penetrate to a depth y1εi(0,2) – an elastic component of 

deformation intensity, which corresponds to the yield strength σ0,2. 

Considering  σi(0,2) =
σ0,2

3G
  and G =

E

2(1+μ)
, we get 

εi(0,2) =
2

3
∙

σ0,2

E
(1 + μ)       (7) 

Plastic deformations occur under the condition: εi  ≥  εi(0,2). 

If we assume that 𝜀i = 𝜀i(0,2) , we can find the penetration depth of a plastic 

deformation i.e. y1 

yl = 3√
2

πe
− 

y2

4aτ

∙
αpqE

cρσ0,2(1+μ)
       (8) 

Thus, if y ≥ y1,  the deformation zone is elastic; if y ≤ y1, the zone is plastic.  

Considering the regularities of heat source intensity dependence on the grinding 

modes, it can be asserted that with increasing grinding depth and grinding wheel 

hardness, the value y1  increases and it decreases with a growth in a speed of 

the part υd and the use of cooling. The higher the heat removal is and the better 

lubricant properties of the liquid are, the more significant the decrease in y1  is. 

Changing these values allows regulation of the residual stresses. 

At the end of the process the intensity of residual stresses will be 

σiII = |
2σ0,2(1+μ)

3E
− 2√

2

πe
− 

y2

4aτ

∙
αpq

ycρ
|      (9) 
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During loading up to the moment of unloading compressive stresses occur. At 

the end of the process in case of cooling until complete detachment residual 

stresses occurring in the part are tensile ones. 

The value of a plastic deformation in the moment of unloading at each point is 

determined by a difference between complete intensity of deformations 

εimax  and an elastic component of complete intensity of deformations εi
e at the 

given moment, i.e. 

εi  unload
p

= εimax − εi(0,2) while θ = θunload  

By inserting the values  εimax  and εi(0,2) , which were found earlier, into this 

equation we get 

εi unload
p

= 2√
2

πe
− 

y2

4aτ

∙
αpq

ycρ
−

2

3
∙

σ0,2

E
(1 + μ)     (10) 

Calculated deformations during unloading are equal to the difference between 

complete and plastic deformation in the moment of start of unloading. Marking 

calculated deformations during unloading by index II, it can be written 

εiII = |εi − εi unload
p | = |2

αpq

√πaτсρ
e− 

y2

4aτ − 2√
2

πe− 
y2

4aτ

∙
αpq

ycρ
+

2

3
∙

σ0,2

E
(1 + μ)| 

Given that θ = θ unload 

The intensity of the calculated deformation is growing with an increase in the 

heat source intensity. 

Given that τ → ∞, the intensity of residual stresses at the end of the process will 

be 

σiII = |
2σ0,2(1+μ)

3E
− 2√

2

πe
− 

y2

4aτ

∙
αpq

ycρ
|      (11) 

Them a in residual stresses σx res or σz res are equal to each other; the third main 

stress, which is perpendicular to the machined (free) surface, is σy = 0. Then 

σi =
√2

2
√(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx )2 =

1

2
√σx

2 + σz 
2 =|σx| = |σz | (12) 

Using the ratios from the theory of small el as to plastic deformations: 

σx − σ =
2

3
∙

σi

εi
(εx − ε)  and  σy − σ =

2

3
∙

σi

εi
(εy − ε), and as σy = 0  and εx = 0  

we subtract the second ratio from the first one and get 

σx =
2

3
∙

σi

εi
(−εy). 

But εi =
2

3
(εy),  it means that  σx =

2

3
∙

σi
2

3⁄ (εy)
(−εy) = −σi. 

Consequently, during loading up to unloading moment the stresses have a 

negative sign, i.e. there are compressive stresses. Speculating about this in that 

manner, it can be shown that at the end of the process with complete cooling 

the signs of σx and σz can be only positive, i.e. residual stresses in the plate 

before detachment are tensile ones. 
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In case of the second scheme of fastening  εx = εz ≠ 0. Taking in compressibility 

condition into account, i.e. whenεx + εy + εz = 3αpθ, we get 

2εx + εy =
3αpq

√πaτсρ
exp [−

y2

4aτ
]       (13) 

As the plate cannot bend, we take the conditions of symmetry into account and 

consider that the deformation of all layers is the same, being εx = const. 

Thus, considering that εx = εz ≠ 0, the expression for stress intensity will be: 

εi =
√2

3
√(εy − εx)

2
+ (εx − εz)2 + (εz − εy)

2
=

√2

3
√2(εy − εx)

2
= 

2

3
|εy − εx| (14) 

Substituting the difference  εy − εx = 2εx + εy − 3εx  , equation (14) can be 

demonstrated as 

εi =
2

3
|εy − εx| = 2

αpq

cρ√πaτ
exp [

−y2

4aτ
] − 2εx     (15) 

The sign of stresses during loading will be as in the first fastening scheme. To 

be more exact  

σx − σ =
2

3
∙

σi

εi

(εx − ε); σy − σ =
2

3
∙

σi

ei
(εy − ε). 

By subtracting the second equation from the first one and considering that for 

the second scheme σy = 0, we get 

σx = σi sh(εx − εy) = σy. 

The moment of unloading start can be found from the condition 
 ∂εi

  ∂τ
= 0, then 

αpq

cρ√πa
[

e
−

y2

4aτ

√τ
+

y2

4aτ
−

e
−

y2

4aτ

2τ√τ
] +

∂εx

∂τ
= 0      (16) 

If the condition is true in the zone of elastic deformations 

εx = αpθ + εx
e         (17) 

By using the generalized Hooke's law εx
e =

1

E
[σx − μ(σy + σz)] and the 

symmetry of σx = σz, we get 

εx
e =

(1−μ)σx

E
         (18) 

By inserting equation (18) in equation (17), we get 

εx = αpθ +
(1 − μ)

E
σx. 

By in targeting this equation with respect to cross-section, the moment of 

unloading start can be found 

τunload =
e

− 
y2

4aτ

2a(e
unload

− 
y2

4aτ +e
unload

− 
h2

4aτ )

       (19) 

If h → ∞, equation (19) for determining of moment of unloading coincides with 

the case of the first fastening scheme. Consequently, for thick plates the 

moments of unloading start are the same in both fastening schemes. As for thin 

plates, unloading in case of the second scheme starts earlier than in case of the 

first one. In addition, the thinner the plate is, the earlier unloading begins (Fig. 

4). 
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Fig. 4 The time of unloading: 

1 – for the first fastening scheme; 2 – for the second fastening scheme 

 

After transformations the value of the deformation intensity at the moment of 

unloading start for the second fastening scheme will be 

εi = |
2αpq

cρ√πaτ
exp [−

y2

4aτ
] −

2αpq

hcρ
erf (

h

2√aτ
)|     (20) 

Inserting the value of  τunload for different layers of a part in formula (19), the 

graph of deformation intensity can be obtained (Fig. 4). 

The value of maximum plastic deformations in the moment of unloading can be 

found according to the formula 

εi max
p

=  ei unload −
2σ0,2

3E
(1 + μ)      (21) 

The boundary of plastic deformation zone can be obtained from the condition 

εi unload =
2

3
∙

σ0,2

E
(1 + μ)       (22) 

By comparing equations (22) and (3) it can be demonstrated that at any moment 

of time the intensity of complete deformations in case of the second fastening 

scheme will be less than in case of the first one. Moreover, the thinner the plate 

is, the more significant the difference in values is. It allows us to make a 

conclusion that in thin plates, fastened according to the second scheme, the 

deformation intensity at the moment of unloading εi is lower than in case of the 

first scheme of fastening. The temperature in the moments of start of unloading 

is higher in case of the second scheme, consequently, the value εi(0,2) =
2

3
∙

σ0,2

E
(1 + μ) is greater. This is explained by the fact that in the second fastening 

scheme plastic deformations in the moment of unloading start are lower than in 

case if the first scheme. In addition, the thinner the part is, the more significant 

this difference is. As primary plastic deformations govern the values of residual 

stresses, residual stresses are lower in case of the second scheme. This 

difference is especially significant in thin plates. 

For the process of unloading the calculated deformation intensity is equal to the 

difference between complete deformation and maximum plastic component of 

deformation intensity at the moment of start of unloading (Fig. 5). 

εiII = |εi − εimax
p |  or   εiII = εi unload −

2

3
∙

σ0,2

E
(1 + μ) + 2εx  (23) 
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Fig. 5 Change in the position of the coordinate origin due  

to a change in the direction of loading:  
О – previous coordinate origin, А – the moment of start of unloading,  
АО1 – elastic unloading, О1 – new coordinate origin, С – new loading 

 

The deformation is always  εx < 0, it means that in the elastic zone there are 

only compressive stresses. In the zone, where elastic deformations occurred 

during loading, we can distinguish two areas. The first one begins from the 

surface and lasts to a point where εiII = 0. In this area there are only tensile 

residual stresses. The second area begins after the point where εiII = 0, only 

compressive residual stresses occur in the second area (Fig. 6). 

 

 
Fig. 6 Stress diagram for the second fastening scheme:  

А – zone of primary plastic deformations 

 

Compressive stresses are calculated according to the formula 

σx = 3εx
E

(1+μ)
         (24) 

The process of formation of residual stresses is explained by the scheme, 

demonstrated on Fig. 7.  

The distribution of the temperature in different moments of time τ ang the depth 

is demonstrated at the top of the Figure. 

We assume that considered thin element of the surface layer is separated by a 

“slit” from the underlying layers of the part. When the grinding wheel passes the 

considered area of the machined surface at the moment τ1 , its thin layer 

becomes heated, while the layers below the “slit” stay cold. In this moment the 

surface layer tends to expand to the value αpθ , but,being exerted to the 

resistance of underlying layers, it turns to be plastically compressed. Meanwhile, 

temporary thermal stresses of compressive nature occur, which causes a plastic 

deformation of the layer – εp. At the moment of time τ2, when lubricant-cooling 
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liquid is added, the surface layer cools down and decreases and the stresses 

become balanced. At the moment of time τ3 , when the part cools down 

completely, plastically deformed surface layer is exposed to an action of residual 

tensile stresses due to a resistance to compression from the underlying layers. 

During machining by the grinding wheel with a discontinuous work surface the 

part is uniformly heated up to certain depth (Fig. 7a,b). 

 

 
a)    b) 

Fig. 7 Scheme of residual stress formation during grinding:  
a) the wheel with continuous cutting surface;  

b) the wheel with discontinuous cutting surface 

 

Under uniform heating at the momentτ1 surface layers expand freely and no 

stresses occur in them. At the next moment of time τ2 the surface layer, located 

under the cavity of the wheel, cools down, while the layer below the “slit” stays 

heated. In this moment the surface layer tending to decrease is exposed to a 

resistance from the underlying layers. Tensile stresses will cause a plastic 

deformation +εp  in it. Further cooling at the moment of time τ3  will cause 

cooling and compression of the subsurface layers, so plastically deformed 

surface layer will be exposed to an action of compressive residual stresses.  

By setting geometric and mechanical characteristics of machined material, one 

can calculate deformation at each point of a flat part in a software designed with 

Delphi program language. You can observe the results of the calculation 

according to equations (1-24) from Fig. 8. It demonstrates a deformation 

diagram for fastened and loaded flat part with the following characteristics: size 
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150х10х100 mm; Poisson's ratio 0.30; yield strength 650 MPa; safety factor 

2.00. 

 

 
Fig. 8 Deformation of flat part 

 

The value of nonflatness is equal to a sag of span of the plate and it is 

determined according to the formula 

C = 0.5 d2/ρ         (25) 

where: 

d  – diameter of plate,  

ρ – radius of plate curvature.  

The resulting value of nonflatness is equal to an allowance for nonflatness of 

plates. If we change the geometric parameters of the part, for example, if we 

decrease the diameter and reduce under the same other conditions, the 

curvature of the plate and it almost doubles the allowance for nonflatness of 

plates. The analysis of the given solution demonstrates that the value of 

nonflatness from thermal deformations is directly proportional to the initial 

temperature difference between the plate and bearing surface of the tool, linear 

expansion coefficient of plate material and its square diameter. At the same 

time, the value of nonflatness is inversely proportional to the plate thickness. 

The lower the linear expansion coefficient of material of machined plate is, the 

higher the probability of oscillations of plate temperature is. 

Thus, in order to decrease thermal deformations, it is reasonable to consider the 

geometric size of a plate to be machined, linear expansion coefficient of plate 

material and an allowance for nonflatness from thermal deformations. 

 

SUMMARY 

As a result of the research on determination of deformations, it is recommended 

to reduce thermal deformations by considering the geometric size of a plate to 

be machined, linear expansion coefficient of plate material and an allowance for 

nonflatness from thermal deformations. The value of nonflatness from thermal 

deformations is directly proportional to linear expansion coefficient of plate 

material and its square overall dimensions. At the same time, the value of 

nonflatness is inversely proportional to the plate thickness.  
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Abstract: The deformation of a part occurring in the process of grinding directly 
influences its exploitation and quality parameters. The instability of shape and size, 
which occurs due to an imbalance of residual stress, can be the one of the major 
causes of deformation of a part. The decrease in stress slows down the deformation 
process. Considering the regularities of heat source intensity dependence on the 
grinding modes, it can be asserted that with increasing grinding depth and grinding 
wheel hardness, the value  increases and it decreases with a growth in a speed of 
the part and the use of cooling. The higher the heat removal is and the better lubricant 
properties of the liquid are, the more significant the decrease in is. Changing these 
values allows regulation of the residual stresses. As a result of the research on 
determination of deformations, it is recommended to reduce thermal deformations by 
considering the geometric size of a plate to be machined, linear expansion coefficient 
of plate material and an allowance for nonflatness from thermal deformations. The 
value of nonflatness from thermal deformations is directly proportional to linear 
expansion coefficient of plate material and its square overall dimensions. At the same 
time, the value of nonflatness is inversely proportional to the plate thickness. 
 
Keywords: deformation, stress state is determined, stress diagram, scheme of 
residual stress formation, grinding 

 


