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GREEN TENSOR IN MATERIAL SCIENCES

44.1 INTRODUCTION

Studies in magneto-optical activity of absorbing nanostructures containing noble
metals demand adequate description of radiative corrections that modify the polarizabil-
ity tensor. The effective medium approximation (EMA) of relative permittivity provides
efficient optical properties of composite material thereby the role of nano-elements geom-
etry is unavoidable. The size and/or shape of the particles may be explicitly incorporated
within homogenization procedure via depolarization tensor. The so called “strong-couple-
dipole” (SCD) method [2] enables to solve this problem explicitly. If the nanoparticles are
not vanishingly small, then the spatial extent of associated Green tensor should not be
neglected [1]. While the results valid for spherical inclusions are relatively known [3, 4],
the other shape variants were so far not be referred in detail. In presented work we de-
velop this method for cylindrical metallic nanoparticles, for which the extended form of
depolarization tensor is derived.

The article is organized as follows. The generalized Maxwell-Garnett model of EMA
is introduced in the next section. In Sect. 3 the basic principles of the SCD polarizability
model are summarized and applied to cylindrical nanoparticles. Numerical results are
discussed in the concluding section.

44.2 EFFECTIVE MEDIUM APPROXIMATION

Consider a medium containing volume fraction f of anisotropic metallic nanopar-
ticles randomly distributed in an anisotropic dielectric host. The particles of the same
size and shape (not necessarily spheres) are identically oriented; the characteristic dimen-
sion of them is supposed to be very small in comparison with wavelength λ of incident
electromagnetic field.

If the electrostatic interaction between the nanoparticles is not negligible, it can
be taken into account by several ways. In our model, we use the generalized Maxwell-
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Garnett approach that enables to consider anisotropic materials; and, also non-spherical
particles correspondingly to the above assumptions. It estimates the macroscopic response
of the composite as average effect of the dipole field induced in the host medium by
different inclusions. This can be done by the Bragg-Pippard model [5] of EMA with the
modification for bi-anisotropic case [6,7], in which the effective relative permittivity tensor
of composite ε̂ef can be written in the form

ε̂ef = ε̂h + f(ε̂p − ε̂h)
[
fI + (1− f)α̂−1(ε̂p − ε̂h)

]−1
, (44.1)

where ε̂p, ε̂h denote the relative permittivity tensors of particles and host medium, re-
spectively. Further, we write I for the identity matrix and α̂ for the volume averaged
polarizability tensor of metallic inclusions.

The polarizability tensor is of great importance to obtain adequate theoretical model
of particle polarization properties because of strong dependence on the geometry of par-
ticles. In cases when the inclusions are e.g. ellipsoids aligned with principal axes, the
polarizability tensor can be expressed in the form

α̂ = (ε̂p − ε̂h)
[
ε̂h + L̂(ε̂p − ε̂h)

]−1
ε̂h , (44.2)

where L̂ is diagonal depolarization tensor – see [6] and the references therein. The tensor
L̂ is symmetrical and real-valued; for appropriate orientation of principal axes, it becomes
diagonal. Moreover, Tr(L̂) = 1 thereby the third diagonal element of L̂ is coupled with
the other two:

L̂ = diag(L1, L2, 1− L1 − L2) . (44.3)

The non-zero elements are referred as depolarizing factors.

44.3 SCD POLARIZABILITY

44.3.1 Green tensor
Assuming that the polarization within the particle is uniform, the radiative cor-

rections can be included into polarizability tensor. From general view this problem has
been analyzed by Lakhtakia [3], however, with practical consequence only for spherical
particles. Nevertheless, the basic principle described there offers possibility to derive
polarizability tensor in the other cases by the SCD method.

Without loss of generality, we suppose an isotropic homogeneous host medium, for
which ε̂h = εhI. Let us consider a particle of the volume V located at the point x0.
Supposing that the electric field inside the particle is constant in the small particle limit
together the permittivity tensor ε̂. The incoming field E0 of the wavelength λ, i.e. with
free space wavenumber k0 = 2π/λ invokes inside the particle the field of the intensity Eins.
The corresponding solution of wave equation for the electrical intensity in an anisotropic
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media can be written of the form

Eins = E0(x0) + k0(ε̂− εhI)
∫
V

Ĝ(x0,x) dV Eins . (44.4)

The generalized Green function (Green electromagnetic tensor) Ĝ is introduced as
the solution of the equation

∇×∇× Ĝ− k2
0εhĜ = δ(x0 − x)I , (44.5)

where δ stays for the Dirac distribution. The Green tensor can be written as

Ĝ(x0,x) =
(

I + 1
k2∇⊗∇

)
g(x0,x) , g(x0,x) = 1

4π
eik‖x−x0‖

‖x− x0‖
. (44.6)

Here, k = k0
√
εh; and, g denotes the free space Green function of Helmholtz operator

∆ + k2.
Introducing the average 〈Ĝ〉 of the Green tensor over the particle volume as

|V |〈Ĝ〉 = |V | 1
|V |

∫
V

Ĝ(x0,x
′) dV , (44.7)

the relation between the fields Eins and E0(x0) follows from (44.4) as

Eins =
[
I− |V |〈Ĝ〉(ε̂− εhI)

]−1
E0(x0) . (44.8)

Multiplying the both sides by ε− εhI from left, we obtain the equality of induced dipole
moments

(ε− εhI)Eins = (ε− εhI)
[
I− |V |〈Ĝ〉(ε̂− εhI)

]−1
E0(x0) ,

where the right-hand term represents the SCD-generalized polarizability tensor

〈α̂〉 = (ε− εhI)
[
I− |V |〈Ĝ〉(ε̂− εhI)

]−1
. (44.9)

In the described model the particle volume is considered arbitrary small, but not negli-
gible. The volume integral in (44.7) over the volume V with the unit outward normal
vector n of its surface S can be rearranged into the form [3]

|V |〈Ĝ〉 =
∫
V

(
Ĝ− Ĝs

)
dV − 1

4πk2

∫
S

n⊗ (x− x0)
‖x− x0‖3 dS (44.10)

with the correction term

Ĝs = 1
4πk2∇⊗∇

(
1

‖x− x0‖

)
. (44.11)
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Usually, the surface integral

L̂ = 1
4π

∫
S

n⊗ (x− x0)
‖x− x0‖3 dS (44.12)

predominates in (44.10), therefore, we meet only this one in numerous practical applica-
tions. It does not depend on the volume, but only on geometrical shape of the domain
V . The singularity at x = x0 can be eliminated by suitably chosen transformation of
co-ordinates; possibly, the integration in the sense of Cauchy principal value should be
applied.

44.3.2 Cylindrical nanoparticles
We will analyze polarization properties of cylindrical metallic nanoparticle with dia-

meter d = 2R and the height h = 2H in the case, when the cylinder axis is aligned with
the incident electromagnetic field E0. The basic form of depolarizing factors derived by
(44.12) take the form [4]

L1 = L2 = 1
2

a√
1 + a2

, L3 = 1− a√
1 + a2

, (44.13)

where a = h/d is the height to diameter ratio.
We focus our attention to the volume integral in (44.10) considering the upper half-

cylinder in the co-ordinate system by the Fig. 44.1. Placing the origin into x0 without

x3
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Fig. 44.1 The upper half of cylindrical nanoparticle.

loss of generality and setting r = ‖x‖, x = (x1, x2, x3), the results of tensor operations in
(44.6) and (44.11) can be written as

Gij = eikr

4πk2r3

[
1
r2xixj(3− 3ikr − k2r2)− δij(1− ikr − k2r2)

]
, (44.14)

Gs,ij = 1
4πk2r3

[
3
r2xixj − δij

]
. (44.15)

We divide the half-cylinder by the cone surface a2(x2
1 + x2

2) = x2
3, 0 ≤ x3 ≤ H, a =

H/R = h/d in two sub-regions V1 and V2 (see Fig. 44.1), for which we apply spherical
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co-ordinates x1 = r cosϕ sin θ, x2 = r sinϕ sin θ, x3 = r cos θ with following integration
bounds on introduced regions:

V1 = {0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ ϑ0, 0 ≤ r ≤ H/ cos θ} ,
V2 = {0 ≤ ϕ ≤ 2π, ϑ0 ≤ θ ≤ π/2, 0 ≤ r ≤ R/ sin θ} .

(44.16)

The integration by the variable ϕ brings an estimate that the off-diagonal elements are
equal to zero, therefore, further we work only with the vectors of diagonal ones that we
obtain correspondingly to (44.14), (44.15) in the form

z(r, θ) = eikr

4k2r

[
(1− ikr − k2r2)w(θ)(1, 1,−2) + 2k2r2(sin3 θ, sin3 θ, 2 cos2 θ sin θ)

]
,

(44.17)
zs(r, θ) = 1

4k2r
w(θ)(1, 1,−2) , w(θ) = (1− 3 cos2 θ) sin θ . (44.18)

Thus, the subtraction of above expressions gives

z − zs = 1
4k2

[
B(r)w(θ)(1, 1,−2) + 2k2r2(sin3 θ, sin3 θ, 2 cos2 θ sin θ)

]
. (44.19)

The singularity r = 0 in the function

B(r) = (eikr − 1)/r − eikr(ik + k2r) (44.20)

vanishes once the ratio (eikr − 1)/r is expanded into Laurent series with respect to r as

(eikr − 1)/r = ik − k2r − ik3r2 + · · · .

In the resulting expressions obtained by succeeding integration by the variable r in the
bounds from 0 to b the product kb << 1 on the both sub-regions V1 and V2 regarding the
assumption h, d << λ. For this reason, the terms with third and higher power of kb are
omitted in what follows. After necessary arrangement we obtain

y =
b∫

0

(z − zs)dr = 1
8b

2 [(1 + cos2 θ) sin θ, (1 + cos2 θ) sin θ, 2 cos2 θ sin θ
]
. (44.21)

The bounds of the angle θ are different on V1 and V2, moreover, nor b is the same. It
means, that the last integration by the variable θ must be splitted. In the region V1 with
b = H/ cos θ it yields

ϑ0∫
0

y
(1)
1 dθ = 1

8H
2 sin2 ϑ0

cosϑ0
,

ϑ0∫
0

y
(1)
3 dθ = 1

4H
2 (1− cosϑ0)2

cosϑ0
. (44.22)

At the volume V2 we have b = R/ sin θ, so that
ϑ0∫

0

y
(2)
1 dθ = −1

8R
2
[
ln 1− cosϑ0

1 + cosϑ0
+ cosϑ0

]
,

ϑ0∫
0

y
(2)
3 dθ = 1

4R
2 cosϑ0 . (44.23)
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The summation of above results gives non-zero components of the tensor M̂; in
addition, we must multiply by two because of V = 2(V1 ∪ V2). To accomplish this
derivation, there the substitution cosϑ0 by a/

√
1 + a2 (see Fig. 44.1) is advantageous to

acquire the final relations

M1 = M2 = −1
2R

2 ln(
√

1 + a2 − a) , M3 = R2a(
√

1 + a2 − a) . (44.24)

The resulting construction of averaged Green tensor (44.10) yields

|V |〈Ĝ〉 = − 1
k2

[
L̂− k2M̂

]
= − 1

k2 N̂ , (44.25)

where the elements of M̂ are given by (44.24); and, we use the depolarizing factors (44.13)
in the tensor L̂. Thus, the polarizability tensor with SCD modification results as

〈α̂〉 = (ε̂− εhI)
[
I + ε−1

h N̂(ε̂p − εhI)
]−1

, (44.26)

where ε−1
h = (k0/k)2. Finally, the elements of N̂ = L̂− k2M̂ follow easy as

N1 = N2 = 1
2

a√
1 + a2

− 1
2k

2R2 ln(
√

1 + a2 − a) , (44.27)

N3 = 1− a√
1 + a2

+ k2R2(
√

1 + a2 − a) . (44.28)

44.3.3 Numerical results
The elements of basic depolarization tensor L̂ depend only on the ratio a = h/d.

The values of the factor L1 summarized in the Tab. 44.1 increase between 0 and 1 with
growing parameter a. With regard to (44.3), the factor L3 increases.

Tab. 44.1 Depolarization factors L1 as the function of the ratio a = h/d by (44.13)

L1 d [nm]
2 5 10 20 50

2 0.3536 0.1857 0.0981 0.0498 0.0200
h 5 0.4642 0.3536 0.2236 0.1213 0.0498

[nm] 10 0.4903 0.4472 0.3536 0.2236 0.0981
20 0.4975 0.4851 0.4472 0.3536 0.1857
50 0.4996 0.4975 0.4903 0.4642 0.3536

A similar trend is observed for the correction tensor k2M̂, where the influence of
the radius R is emphasized. In addition to the tensor L̂, the values depend also on the
incident field wavelength λ as well as on the permittivity of host medium εh due the
wavenumber k. The data of k2M1 in the Tab. 44.2 were calculated correspondingly to
the air as the host medium (εh = 1) at the wavelength λ = 633 nm.
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Tab. 44.2 Correction term k2M1 as the function of the ratio a = h/d by (44.24)

k2M1 d [nm]
2 5 10 20 50

2 0.0000 0.0000 0.0000 0.0000 0.0000
h 5 0.0005 0.0003 0.0001 0.0001 0.0000

[nm] 10 0.0028 0.0018 0.0011 0.0006 0.0002
20 0.0148 0.0103 0.0071 0.0043 0.0019
50 0.1205 0.0923 0.0712 0.0507 0.0271

CONCLUSIONS

Obtained results offer adequate description of magnetically induced anisotropy in
heterogeneous nanostructure with noble metal inclusions for the future application to the
magneto-plasmonic sensor element design with the use in biology or chemistry.
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GREEN TENSOR IN MATERIAL SCIENCES

Abstract: Material properties of heterogeneous nanomaterials modelled by effective medium ap-
proximation (EMA) demand specific approaches when metallic inclusions in a host medium are
exposed to external magnetic field. Resulting induced anisotropy of permittivity is manifested
itself by a specific form of polarizability tensor. In presented work, this one is applied in the so
called “strong-couple-dipole” (SCD) method, where the electromagnetic Green tensor is of key
importance. The results are oriented to the magneto-plasmonic sensor element design for the
use in biology or chemistry.

Keywords: anisotropy, effective medium, polarizability tensor, Green tensor.

GREENŮV TENZOR V MATERIÁLOVÝCH VĚDÁCH

Abstrakt: Modelování materiálových vlastnosti heterogenních nanomateriálů metodou aproxi-
mace efektivním prostředím (EMA) vyžaduje specifický přístup, jsou-li kovové částice v obklop-
ujícím prostředí vystaveny magnetickému poli. Výsledná indukovaná anizotropie permitivity se
projevuje specifickou formou tenzoru polarizovatelnosti. Ten je v této práci aplikován prostřed-
nictvím tzv. metody silně vázaných dipólů (SCD), kde se klíčovým způsobem uplatňuje Greenův
(elektromagnetický) tenzor. Výsledky směřují k návrhu magneto-plasmonického senzoru s užitím
v bilogii a chemii.

Klíčová slova: anizotropie, efektivní prostředí, tenzor polarizovatelnosti, Greenův tenzor.
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