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SYMMETRIZED SEMI-SMOOTH NEWTON
METHOD FOR SOLVING 3D CONTACT
PROBLEMS

38.1 INTRODUCTION

The dual algebraic formulation of discretized contact problems with Tresca friction in
three space dimensions (3D) belongs to the class of problems called QCQP (Quadratically
Constrained Quadratic Program, [1]) with a specific structure: the minimized function is
strictly convex and quadratic subject to simple inequality bounds and separable quadratic
constraints (spherical for isotropic and elliptical for orthotropic Tresca friction [3]).

For solving such problems we use an active set implementation of the semi-smooth
Newton (SSN) method. However, the respective slanting function is given by non-
symmetric matrices and this property can not be eliminated by simple linear algebra
tools (unlike 2D case [5]). Fortunately, the slanting function at the minimizer does not
contain some terms so that a symmetrization is possible. Neglecting these terms a-priori
we get a symmetric approximation of the slanting function [6]. Then 3D contact problems
can be treated analogously as 2D ones [5].

We propose a monotonous globalization strategy guaranteeing the R-linear conver-
gence rate of the algorithm. To our knowledge, there is no such analysis for 3D frictional
contact problems.
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38.2 ALGEBRAIC CONTACT PROBLEMS WITH TRESCA FRICTION

The primal-dual algebraic formulation of discrete contact problems with Tresca fric-
tion reads as follows: find (u∗, λ∗ν , λ∗τ ) ∈ Rn × Rm × R2m satisfying

Ku+N>λν + T>λτ − f = 0, (38.1)
Nu− d ≤ 0, λν ≥ 0, λ>ν (Nu− d) = 0, (38.2)
‖λ̄τ,i‖ ≤ gi
‖λ̄τ,i‖ < gi ⇒ ūτ,i = 0
‖λ̄τ,i‖ = gi ⇒ ∃ci ≥ 0 : ūτ,i = ciλ̄τ,i

 i ∈M, (38.3)

where K ∈ Rn×n is symmetric, positive definite, N ∈ Rm×n, T ∈ R2m×n, f ∈ Rn,
d ∈ Rm

+ , and gi are entries of g ∈ Rm
+ . The symbols ūτ,i, λ̄τ,i ∈ R2 in (38.3) denote

ūτ,i = ((Tu)2i−1, (Tu)2i)>, λ̄τ,i = (λτ,2i−1, λτ,2i)>, i ∈M.

Let q : R3m → R be the quadratic function defined by

q(λ) = 1
2λ
>Aλ− λ>b,

where λ = (λ>ν , λ>τ )>, A = BK−1B> is symmetric, positive definite with the full row-rank
matrix B =

(
N>, T>

)>, b = BK−1f−c, and c =
(
d>, 0>

)>. r(λ) = Aλ−b is the gradient.
Further, denote Λν = Rm

+ , Λτ = Λτ,1 × · · · × Λτ,m, and Λτ,i = {λ̄τ,i ∈ R2 : ‖λ̄τ,i‖ ≤ gi},
i ∈ M, Λ = Λν × Λτ . Since (38.1)-(38.3) represent the Karush-Kuhn-Tucker conditions,
after simple manipulations, we arrive at the dual formulation of the algebraic contact
problem with Tresca friction: find λ∗ ∈ Λ such that

λ∗ = arg min q(λ) subject to λ ∈ Λ. (38.4)

As q is strictly convex, quadratic and Λ is the closed and convex set, it is well known that
there exists the unique solution λ∗ ∈ Λ to (38.4).

Now we reformulate (38.1)-(38.3) as a system of nonsmooth equations. We introduce
the projections PΛν : Rm → Λν , PΛτ : R2m → Λτ . PΛν (λν) = (φ(λν,1)>, . . . , φ(λν,m)>)>,
where φ(λν,i) = max{0, λν,i}, i ∈ M and PΛτ (λτ ) = (ψg1(λ̄τ,1)>, . . . , ψgm(λ̄τ,m)>)>,
where

ψgi(λ̄τ,i) =


λ̄τ,i if ‖λ̄τ,i‖ ≤ gi,

gi

‖λ̄τ,i‖
λ̄τ,i if ‖λ̄τ,i‖ > gi.

Let
G : Rn+3m → Rn+3m, y =

(
u>, λ>ν , λ

>
τ

)> ∈ Rn+3m

be the function defined by

G(y) =

 Ku+N>λν + T>λτ − f
λν − PΛν (λν + ρ(Nu− d))
λτ − PΛτ (λτ + ρTu)

 , (38.5)
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where ρ > 0 is an arbitrary but fixed parameter. It is easy to show that (38.1)-(38.3) and
the equation

G(y) = 0 (38.6)

have the same (unique) solution y∗ = (u∗>, λ∗ν>, λ∗τ>)>. The SSN method can be used.

38.3 SEMI-SMOOTH NEWTON METHOD

It is convenient to use the concept of a slant differentiability ( [2,4]) on the equation
(38.6). Below, we will use an active/inactive set terminology and the indicator matrices.
Concerning the unilateral contact law (38.2), we use Aν , Iν ⊆ M be the active, and
inactive set at y, respectively: Aν = {i ∈M : 0 ≤ λν,i +ρ(Nu−d)i}, Iν =M\Aν . For
the Tresca friction law (38.2) we use Aτ , Iτ ⊆M, where Aτ = {i ∈ M : ‖λ̄τ,i + ρūτ,i‖ ≤
gi}, and Iτ = M\Aτ . Now, after the slant differentiation of the term (38.5), we arrive
at

Go(y) =

 K N> T>

−ρD(Aν)N D(Iν) 0
Go

31(y) 0 Go
33(y)

 ,

where

Go
31(y) = −ρD(Āτ )T − ρD(Īτ )P o

Λτ (λτ + ρTu)T,

Go
32(y) = 0,

Go
33(y) = D(Īτ )(I − P o

Λτ (λτ + ρTu)),

and P o
Λτ (λτ + ρTu) = diag(ψog1(ȳ1), . . . , ψogm(ȳm)) ∈ R2m×2m.
Each Newton iteration solves the linear system for yk+1, i.e.

Go(yk)yk+1 = Go(yk)yk −G(yk). (38.7)

38.3.1 Modified algorithm
The slanting function of the projection onto the circle reads as

ψoδ(y) =


I if ‖y‖ ≤ δ,

δ

‖y‖

(
I − 1
‖y‖2 yy

>
)

if ‖y‖ > δ,

where I ∈ R2×2. It is easy to show that I − 1
‖y‖2 yy

> is the orthogonal projection onto
〈y〉⊥ so that

ψoδ(y)ŷ = 0 ∈ R2 ∀ŷ ∈ 〈y〉, ‖y‖ > δ, (38.8)

where 〈·〉 denotes the linear span. Using this fact, the third block equation in (38.7) splits
with respect to the active/inactive set:

−ρTĀτu
k+1 = 0, λ̄k+1

τ,i − ψogi(ȳ
k
i )ȳk+1

i = ψgi(ȳki ), i ∈ Iτ .
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From (38.8) it follows that the terms ψogi(ȳ
k
i )ȳk+1

i tend to zero if the algorithm converges.
Therefore we propose to omit them and to replace Go(y) by the following approximation:

G̃o(y) =

 K N> T>

−ρD(Aν)N D(Iν) 0
−ρD(Āτ )T 0 D(Īτ )

 . (38.9)

Lemma 38.1 Let G and G̃o be given by (38.5), and (38.9), respectively. Suppose that y∗

is the solution to G(y) = 0. If the sequence of the modified Newton iterations

yk+1 = yk − G̃o(yk)−1G(yk) (38.10)

converges, then its limit is y∗.

Proof See [6]. �

Each iterative step (38.10) leads to the linear system that splits as follows:

λk+1
ν,Iν = 0, λ̄k+1

τ,i = ψgi(ȳki ), i ∈ Iτ (38.11)

and  K N>Aν T>Āτ
NAν 0 0
TĀτ 0 0


 uk+1

λk+1
ν,Aν
λk+1
τ,Āτ

 =

 f − T>Īτλ
k+1
τ,Īτ

dAν
0

 .

To propose a computationally efficient inexact implementation, using simple ma-
nipulations to eliminate {uk} and therefore reformulating the active and inactive sets
(without using u), we arrive at the dual implementation of the algorithm with the re-
duced gradient used as a stopping criterion.

Algorithm MSSN (Modified SSN method)
Given λ0 ∈ R3m, ρ > 0, and ε ≥ 0. Set err0 = ‖r̃ρ(PΛ(λ0))‖ and k = 0.
(Step 1 ) If errk ≤ ε, return λ = PΛ(λk), else go to Step 2.
(Step 2 ) Assembly the active/inactive sets at λk:

Aν = {i ∈M : λki − ρrki ≥ 0}, Iν =M\Aν , (38.12)
Aτ = {i ∈M : ‖λ̄kτ,i − ρr̄ki ‖ ≤ gi}, Iτ =M\Aτ . (38.13)

(Step 3 ) Find λk+1 so that

λk+1 = arg min q(λ) subject to (38.11). (38.14)

(Step 4 ) Set errk+1 = ‖r̃ρ(PΛ(λk+1))‖, k = k + 1 and go to Step 1.

The main difference between Algorithm MSSN and its 2D counterpart lies in
the finite termination property. The 2D algorithm terminates in a finite number of steps
(see [5]). Due to the projections onto the circles with infinitely many boundary points the
Algorithm MSSN has to treat infinitely many linear systems.
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38.4 INEXACT AND GLOBALLY CONVERGENT ALGORITHMS

Firstly, we propose an inexact implementation of the algorithm, i.e. the solution to
(38.14) we get using the CG method. The adaptive precision control ((Step 3.1 )) is used
to accept inexact inner solutions. This variant of the algorithm we denote by Algorithm
IMSSN.

The key idea to achieve the globally convergent variant of the algorithm is that the
generated sequence {q(λk)} will be monotonically decreasing. For that, we use the upper
bound for ρ and ensure that all iterations belong to Λ, i.e. we choose λ0 ∈ Λ and terminate
the CG loop before an iteration outside of Λ is generated (CGMfeas). To simplify our
presentation we denote: A = Aν ∪ {i+m : i ∈ Āτ} and I = {1, 2, . . . , 3m} \ A.

Algorithm GIMSSN (Globally convergent IMSSN method)
Given λ0 ∈ Λ, ρ ∈ (0, 2σ−1

max), ε ≥ 0, and rtol, cfact ∈ (0, 1).
Set err0 = ‖r̃ρ(λ0)‖, tol0 = rtol/cfact, and k = 0.
(Step 1 ) If errk ≤ ε, return λ = λk, else go to step Step 2.

(Step 2 ) Assembly the active/inactive sets at λk by (38.12)-(38.13).

(Step 3.1 ) tolk+1 = min{rtol × errk/err0, cfact × tolk}.

(Step 3.2 ) λk+1,0 = PΛ(λk − ρr(λk)).

(Step 3.3 ) λk+1 = CGMfeas(A, b,A, λk+1,0, tolk+1).

(Step 4 ) Set errk+1 = ‖r̃ρ(λk+1)‖, k = k + 1, and go to Step 1.

The difference to the 2D case consists of treatment the spherical constraints that is
hidden inside the evaluation of the projection PΛ and in the feasibility test in CGMfeas.

Theorem 38.1 Let λ0 ∈ Λ, ε = 0, ρ ∈ (0, 2σ−1
max), and rtol, cfact ∈ (0, 1). Let σmin, σmax

be the smallest and largest eigenvalues of A, respectively, and let λ∗ be the solution to
(38.4). Let {λk} denote the sequence generated by Algorithm GIMSSN. The following
statement holds:
(i) the sequence {q(λk)} decreases so that

q(λk+1)− q(λ∗) ≤ η(ρ) (q(λk)− q(λ∗)),

where

η(ρ) =
{

1− ρσmin for ρ ∈ (0, σ−1
max],

1− (2σ−1
max − ρ)σmin for ρ ∈ [σ−1

max, 2σ−1
max);

(ii) if {λk} is finite, then its last element is λ∗;
(iii) if {λk} is infinite, then it converges to λ∗ R-linearly so that

‖λk − λ∗‖ ≤ C η(ρ)k/2,
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where C =
√

2(q(λ0)− q(λ∗))/σmin.

Proof See [5], Theorem 3.

38.5 NUMERICAL EXPERIMENTS

We will assess performances of different algorithms for contact of two bricks given
by the domains Ω1 = (0, 2)× (0, 1)× (1, 2) and Ω2 = (0, 2)× (0, 1)× (0, 1) (in [m]). The
briks are made of isotropic, homogeneous materials characterized by the Young modulus
50000 [MPa] and the Poisson ratio 0.277 for Ω1 and 0.35 for Ω2. The decompositions of
∂Ω1 and ∂Ω2 are as follows:

γu1 = {2} × (0, 1)× (1, 2), γc1 = (0, 2)× (0, 1)× {1}, γp1 = ∂Ω1\γu1 ∪ γc1,

γu2 = {0} × (0, 1)× (0, 1), γc2 = (0, 2)× (0, 1)× {1}, γp2 = ∂Ω2\γu2 ∪ γc2.

The slip bound on γc1 is given by constant g = 0.09 (in [MPa]). The volume forces vanish
for both bodies. The non-vanishing surface tractions act on the part of γp1 denoted by
L8 = (0, 2)× (0, 1)×{2} and on the part of γp2 denoted by L6 = {0}× (0, 1)× (1, 2), they
are given by the same constant functions p1 = p2 = (0, 0,−1) (in [MPa]). The problem
is approximated by the linear finite elements over regular triangulations.

In tables below we report the number nA of matrix-vector multiplications by A and
the number iter of outer (Newton) iterations, i.e. the last value of k, for different DOFs
n and m. The value nA characterizes computational complexity.

Example 38.1. In Table 38.1 we compare efficiency of Algorithm IMSSN with the
dual implementation of Algorithm SSN (a variant of the algorithm without the mod-
ification). We use few BiCGSTAB iterations [7] to get inexact solutions of inner linear
systems. One can observe that computations based on symmetric inner linear systems
are considerably more efficient.

Tab. 38.1 Symmetrized versus non-symmetrized variants of the SSN method.

IMSSN SSN

n/m iter/nA iter/nA

24576/256 10/161 9/1180
55566/441 9/143 9/1428
105456/676 10/185 11/2506
178746/961 10/190 10/2162
279936/1296 9/167 10/2298
413536/1681 10/216 10/2586

Source: own elaboration
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CONCLUSION

We have analyzed the solution of contact problems with Tresca friction in 3D. The
analysis is similar to the 2D case, see [5]. We have pointed out the main differences
between these two cases. The 3D case is more complicated due to projections onto circles
in R2 describing the friction law in 3D.
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SYMMETRIZED SEMI-SMOOTH NEWTON METHOD FOR SOLVING 3D
CONTACT PROBLEMS

Abstract: The semi-smooth Newton method for solving discretized contact problems with Tresca
friction in three space dimensions is analyzed. The slanting function is approximated to get sym-
metric inner linear systems. The primal-dual algorithm is transformed into the dual one so that
the conjugate gradient method can be used. The R-linear convergence rate is proved for an inex-
act globally convergent variant of the method. Numerical experiments conclude the paper. The
contact problems are important in many practical applications, e.g., biological processes, design
of machines, transportation systems, metal forming, or medicine (bone replacements).

Keywords: contact problem; Tresca friction; semi-smooth Newton method; conjugate gradi-
ent method; gradient projection; convergence rate.

SYMETRIZOVANÁ NEHLADKÁ NEWTONOVA METODA PRO ŘEŠENÍ 3D
KONTAKTNÍCH ÚLOH

Abstrakt: V práci je analyzována nehladká Newtonova metoda pro řešení diskretizovaných kon-
taktních úloh s Trescovým třením ve třech prostorových dimenzích. Slanting funkce je aproxi-
mována za účelem získání symetrických vnitřních lineárních úloh. Pro použití metody sdružených
gradientů je primárně-duální algoritmus převeden na duální. R-lineární rychlost konvergence je
dokázána pro nepřesnou globálně konvergentní variantu metody. Závěrem jsou uvedeny num-
erické experimenty. Kontaktní úlohy mají řadu významných aplikací, např. biologické procesy,
design strojů a přepravních systémů, tváření kovů nebo medicína (modelování kostních náhrad).

Klíčová slova: kontaktní úloha; Trescovo tření; nehladká Newtonova metoda; metoda sdružených
gradientů; projekce gradientu; rychlost konvergence.
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