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PRECONDITIONING IN THE
PATH-FOLLOWING ALGORITHM FOR THE
STOKES FLOW WITH STICK-SLIP
CONDITIONS

37.1 INTRODUCTION

The paper deals with the Stokes flow with the stick-slip boundary conditions. Unlike
the classical Navier law [1], we consider the case when the slip of a fluid along the wall
may occur only when the shear stress attains certain bound which is given a-priori and
does not depend on the solution itself. The mathematical model of the velocity-pressure
formulation leads to the so-called variational inequality of the second kind. This problem
exhibits many attractive applications: blood flow, metal forming processes, the polymer
flow, or the hydrodynamics problems; see [2, 3] and references therein.

Our approximation uses the mixed finite element method based on the P1-bubble/P1
finite element pair [4]. The stiffness matrices are generated by a vectorized code [5].
The finite element approximation is combined with the TFETI domain decomposition
method [6]. The dual algebraic problem arising after the elimination of the velocity and
the pressure components leads to the minimization of the quadratic, strictly convex func-
tion in terms of three Lagrange multipliers representing: the gluing condition (including
the Dirichlet boundary condition), the impermeability condition on the slip part of the
boundary and the stick-slip condition. The third Lagrange multiplier is subject to box
constraints and, due to the use of the TFETI method, all Lagrange multipliers have to
satisfy a linear equality constraint. The solution to the dual problem is computed by a
path-following variant of the interior-point method [7] adapted for the box and the linear
equality constraints [8]. Highly promising numerical experiments of the path-following
algorithm for non-decomposed problems has been presented in [9]. However, an extension
of the algorithm for the TFETI is non-trivial.
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The main idea of the algorithm consists on the use of the damped Newton method
whose iterations lay in a neighborhood of a central path leading to the solution. The inner
subproblems are given by linear systems with a block structure. These systems are reduced
using the Schur complement method so that a variant of the preconditioned projected
conjugate gradient method (PPCGM) may be used. The PPCGM generates iterations
in a subspace determined by the kernel of the matrix representing the dual equality
constraints. An appropriate preconditioner eliminates ill conditioning of the reduced
systems that arises typically in interior point methods when the iterations approach the
solution. For thet, we use the oblique projector. Our numerical experiments are performed
by the decomposed problems taken from [9]. The first results computed with the TFETI
active set strategy algorithm and a brief description of the simplified version of the TFETI
path-following algorithm could be found in [10]. The main issue of this paper is an
experimental assessments of the quality of the preconditioning variants that arise from
the spectral analysis of the preconditioning technique [8].

37.2 FORMULATION OF THE PROBLEM

Let Ω be a bounded domain in R2 whose sufficiently smooth boundary ∂Ω is split into
three non-empty disjoint parts: ∂Ω = γD ∪ γN ∪ γC . We consider the model of a viscous
incompressible Newtonian fluid modelled by the Stokes system with the Dirichlet and
Neumann boundary conditions on γD and γN , respectively, and with the impermeability
and the stick-slip boundary condition of the Tresca type on γC :

−η∆u+∇p = f in Ω,
∇ · u = 0 in Ω,

u = uD on γD,

σ = σN on γN ,

|σt(x)| < g(x) ⇒ ut(x) = 0 x ∈ γC ,

|σt(x)| = g(x) ⇒ ∃κ(x) ≥ 0 : σt(x) = −κ(x)ut(x) x ∈ γC ,


(37.1)

where σ = η∂u/∂n − pn. Here, u = (u1, u2) is the flow velocity, p is the pressure, f =
(f1, f2) represents forces acting on the fluid, η > 0 is the dynamic viscosity, and uD, σN

are the given Dirichlet and Neumann boundary data, respectively. Further n = (n1, n2),
t = (−n2, n1) is the unit outward normal and tangential vector to ∂Ω, respectively, while
un = u ·n, ut = u · t is the normal and tangential component of u along ∂Ω, respectively.
Finally σt = σ · t is the shear stress and g ≥ 0 is a given slip bound function on γC .
Further we decompose Ω into s non-overlapping subdomains Ωi such that Ω =

⋃s
i=1 Ωi.

The dual algebraic problem reads as follows:

Find λ ∈ Λ such that q(λ) ≤ q(µ) ∀µ ∈ Λ (37.2)

with q : Λ→ R, q(µ) = 1
2µ

T Fµ−µT d and Λ = {µ = (µT
e ,µ

T
n ,µ

T
t )T : |µt| ≤ g,Gµ = e},
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where F = CM+CT , d = CM+f − ūD, G = −RT CT , e = −RT f , and

M =
(

A BT

B −E

)
, f =

(
fu

c

)
, C =

 Be

N
T

 , ūD =

 uD

0
0

 .

Some of the objects exhibit a block structure due to the TFETI method that can be
used for a parallel implementation. The stiffness matrix for the Laplace operator is
A = diag(A1, . . . ,As) with symmetric, positive semidefinite blocks of defect two, fu =
(fT

u1, . . . , f
T
us)T represents nodal forces, the stiffness matrix for the divergence operator

is B = diag(B1, . . . ,Bs) with full row-rank blocks. The matrix and the vector arising
from the elimination of the bubble components are E = diag(E1, . . . ,Es) with symmetric,
positive semidefinite blocks and c = (cT

1 , . . . , cT
s )T . The matrix Be enforces the continuity

of the solution and ensures the Dirichlet boundary condition. The Dirichlet data are
placed in uD. The i-th row of N,T is defined by the normal vector n(xi), the tangential
vector t(xi), respectively, where xi is the node belonging to γC \ γD. The redundancy is
eliminated so that C has full row rank. The vector g collects the slip bound values at the
nodes xi ∈ γC \ γD (arising from a numerical integration of q). The null space basis to
M may by assembled as follows:

RAi =
(

1 0
0 1

)
, RA = diag(RA1 , . . . ,RAs), R =

(
RA

0

)
,

where 1 is the vector of all ones.
After obtaining λ from (37.2), one compute the velocity and the pressure compo-

nents using w = M+(f −CTλ) + Rα, where α is also result of the solution method for
(37.2) and w = (uT

1 ,pT
1 , . . . ,uT

s ,pT
s )T . The actions of the generalized inverse M+ to M

can be computed by the method introduced in [11].

37.3 PATH-FOLLOWING ALGORITHM

The starting point for the algorithm is the constrained equation that is equivalent
to the Karush-Kuhn-Tucker optimality conditions to (37.2) [8]:

H(v) = 0, ν ≥ 0, z ≥ 0, (37.3)

where

H(v) =



Fλ− d + GTµ+
(
−ν1 + ν2

0

)
Gλ− e(
−λt − g
λt − g

)
+ z

NZ1


, (37.4)
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with v = (λT ,µT ,νT , zT )T , ν = (νT
1 ,ν

T
2 )T , N = diag(ν), Z = diag(z), and 1 is the

vector of all ones. The problem (37.3) is solved by the Newton-type method so that the
non-singular Jacobi matrix J = J(v) to H is needed. It is the matrix of the linear system

(37.5) with J13 = JT
31 =

(
−I I
0 0

)
. Since z is always positive, J(v) is non-singular

for any ν ≥ 0. The path-following algorithm exploit a damping procedure keeping the
Newton iterations near the so-called central path tending the solution proportionally. It
allows that longer steps may be performed; see [8] for more details. Another key of the
computational efficiency is the way how the inner linear systems are solved.

37.4 PRECONDITIONING OF INNER LINEAR SYSTEMS

The inner linear systems read as follows:
F GT J13 0
G 0 0 0
J31 0 0 I
0 0 Z N




∆x
∆µ
∆ν
∆z

 =


r1

r2

r3

r4

 , (37.5)

where r1, r2 = 0, r3, r4 stand for the components of the right-hand side vector. For
solving (37.5) we use the Schur complement reduction. From the third and the fourth
block equations in (37.5), we get ∆z = r3−J31∆x and ∆ν = Z−1(r4−Nr3)+Z−1NJ31∆x,
respectively. The reduced system for unknows ∆x and ∆µ takes the form(

F̄ GT

G 0

)(
∆x
∆µ

)
=
(

r̄1

0

)
, (37.6)

where F̄ = F + D, D = diag(Z−1
1 N1 + Z−1

2 N2,0) is diagonal with Ni = diag(νi), Zi =
diag(zi), i = 1, 2, z = (zT

1 , zT
2 )T , and r̄1 = r1 + J13Z−1(Nr3 − r4). The matrices F̄ and D

are symmetric, positive semidefinite but they may be singular.
The second equation in (37.6) yields that ∆x ∈ Ker G. Let us introduce the or-

thogonal projector onto Ker G defined by P = I −GT (GGT )−1G. Multiplying the first
equation in (37.6) by P, we arrive at the projected equation

PF̄∆x = Pr̄1, ∆x ∈ Ker G. (37.7)

The invertibility of PF̄ on Ker G is guaranteed [8] so that the unique solution to (37.7)
may be computed by the projected conjugate gradient method. The unknown ∆µ in
(37.6) is computed, after obtaining ∆x, by ∆µ = (GGT )−1G(r̄1 − F̄∆x).

The equation (37.7) requires an efficient preconditiong, since the diagonal entries
of D tend to infinity for components of z ≥ 0 in (37.3) that are satisfied as equality. We
will use the preconditioner PD̄ with D̄ = DF +D, where DF is an appropriate symmetric,
positive definite matrix. The preconditioned variant of (37.7) is the projected equation

[PD̄]−1PF̄∆x = [PD̄]−1Pr̄1, ∆x ∈ Ker G, (37.8)
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where [PD̄]−1 denotes the inverse to PD̄ on Ker G. This inverse can be computed by
the formula

[PD̄]−1 = PD̄−1D̄−1
,

where PD̄−1 = I− D̄−1GT (GD̄−1GT )−1G is the oblique projector onto Ker G.
The equation (37.8) can be solved by the PPCGM. The convergence depends on the

spectrum of [PD̄]−1PF̄ on Ker G. Let fmin, fmax be the smallest, largest eigenvalue to
F on KerG, respectively, and let dmin, dmax be the smallest, largest eigenvalue to DF on
Ker G, respectively. The following result holds [8] .

Theorem 37.1 The eigenvalues λ of [PD̄]−1PF̄ on Ker G satisfy:

(i) if fmin < dmax and dmin < fmax, then λ ∈ [fmind
−1
max, fmaxd

−1
min];

(ii) if dmax ≤ fmin, then λ ∈ [1, fmaxd
−1
min];

(iii) if fmax ≤ dmin, then λ ∈ [fmind
−1
max, 1].

As the consequence we get the bounds on the spectral condition number κ of the
preconditioned, projected operator on Ker G.

Corollary 37.1 Theorem 37.1 implies:

(i) if fmin < dmax and dmin < fmax, then κ([PD̄]−1PF̄) ≤ κ(F)κ(DF );

(ii) if dmax ≤ fmin, then κ([PD̄]−1PF̄) ≤ fmax/dmin;

(iii) if fmax ≤ dmin, then κ([PD̄]−1PF̄) ≤ dmax/fmin.

The efficiency of precoditioning will be tested experimentally.

37.5 NUMERICAL EXPERIMENTS

Let Ω = (0, 1)× (0, 1), γD = (0, 1)× {1}, γNleft = {0} × (0, 1), γNright = {1} × (0, 1),
γN = γNleft ∪ γNright , and γC = {(x, 0.8(x − x2)) : x ∈ (0, 1)}. The data of problem
(37.1) are defined as follows: f = −ν∆uexp +∇pexp, ν = 1, uD = 0, σN = σexp|γN , and
g = 10, where uexp(x, y) = (− cos(2πx) sin(2πy) + sin(2πy), sin(2πx) cos(2πy)− sin(2πx))
and pexp(x, y) = 2π(cos(2πy) − cos(2πx)). Note that uexp and pexp do not solve (37.1).
The finite element mesh, the velocity, and the pressure field are drawn in Figure 37.1.
On γC we prescribe different values of g in order to illustrate friction effects that are seen
in Figure 37.2 for slip boundary. All results are calculated by the terminating tolerance
tol = 10−5 for the path-following algorithm. All codes are implemented in Matlab 2013b.
The computations were performed by ANSELM supercomputer at IT4I VŠB-TU Ostrava.

In tables below we introduce complexity of computations in terms of matrix-vector
multiplications by F (boldface numbers) for different numbers of subdomains (s), primal
unknowns (3n, where n is the number of finite element nodes over all subdomanis), and
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Fig. 37.1 g = 10: mesh (left), velocity field (middle), isobars (right)
Source: own elaboration
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Fig. 37.2 g = 0.05 (left), g = 10 (middle), g = 40 (right)
Source: own elaboration

dual unknowns (3ne + 2nd + 2nc, where ne is the number of nodes in which gluing of sub-
domain solutions is required, nd is the number of nodes in which the Dirichlet boundary
condition is prescribed, and nc is the number of nodes on the slip part of the bound-
ary). We denote by h and H the norm (diameter) of the finite element triangles and the
subdomains, respectively.
Example 1. We test the efficiency of the preconditioners with the fixed ratio H/h = 8.
In Table 37.1–Table 37.4 we use DF = I, DF = d × I with d = (fmax + f+

min)/2 (where
f+

min is the smallest positive eigenvalue of F), DF = abs(diag(F)), and DF = diag(F),
respectively. The best performance is achieved for the last case.

Tab. 37.1 DF = I
s primal/dual g = 0.05 g = 10 g = 40

4(2× 2) 972/173 536 631 648
16(4× 4) 3888/753 717 1205 1292
36(6× 6) 8748/1741 850 1390 1254
64(8× 8) 15552/3137 979 1419 1858
100(10× 10) 24300/4941 1386 1643 1917

Source: own elaboration
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Tab. 37.2 DF = d× I with d = (fmax + f+
min)/2

s primal/dual g = 0.05 g = 10 g = 40

4(2× 2) 972/173 434 620 636
16(4× 4) 3888/753 645 1206 1248
36(6× 6) 8748/1741 910 1366 1267
64(8× 8) 15552/3137 944 1486 1299
100(10× 10) 24300/4941 868 1495 1881

Source: own elaboration

Tab. 37.3 DF = abs(diag(F))

s primal/dual g = 0.05 g = 10 g = 40

4(2× 2) 972/173 307 415 332
16(4× 4) 3888/753 374 570 531
36(6× 6) 8748/1741 448 586 564
64(8× 8) 15552/3137 429 666 617
100(10× 10) 24300/4941 464 837 604

Source: own elaboration

Tab. 37.4 DF = diag(F)

s primal/dual g = 0.05 g = 10 g = 40

4(2× 2) 972/173 142 223 181
16(4× 4) 3888/753 181 255 247
36(6× 6) 8748/1741 192 267 263
64(8× 8) 15552/3137 187 326 257
100(10× 10) 24300/4941 189 339 346

Source: own elaboration

Example 2. In Table 37.5–Table 37.8 we test the efficiency of the same preconditioners as
in Example 1 for the fixed number of subdomains s = 16(4× 4) and changing H/h. The
conclusion is analogous.

Tab. 37.5 DF = I
H/h primal/dual g = 0.05 g = 10 g = 40

2 432/225 607 660 855
4 1200/401 660 1006 944
8 3888/753 717 1205 1292
16 13872/1457 1277 1447 1381

Source: own elaboration
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Tab. 37.6 DF = d× I with d = (fmax + f+
min)/2

H/h primal/dual g = 0.05 g = 10 g = 40

2 432/225 613 672 861
4 1200/401 678 1002 951
8 3888/753 645 1206 1248
16 13872/1457 925 1545 1385

Source: own elaboration

Tab. 37.7 DF = abs(diag(F))

H/h primal/dual g = 0.05 g = 10 g = 40

2 432/225 274 422 380
4 1200/401 300 540 407
8 3888/753 374 570 531
16 13872/1457 584 762 782

Source: own elaboration

Tab. 37.8 DF = diag(F)

H/h primal/dual g = 0.05 g = 10 g = 40

2 432/225 171 209 195
4 1200/401 160 240 191
8 3888/753 181 255 247
16 13872/1457 213 371 306

Source: own elaboration

Example 3. In Table 37.9 we report informations on diagonal entries of DF = diag(F) =
(dii). The symbols n−, n+ stand for the number of the negative, positive diagonal entries,
respectively. Their extremal values are denoted as follows: dmin = min{dii}, dmax =
max{dii}, d−max = max{dii : dii ≤ 0}, and d+

min = min{dii : dii ≥ 0}.

Tab. 37.9 DF = diag(F)

s primal/dual n− dmin d−max n+ d+
min dmax

4(2× 2) 972/173 35 −6686.73 −2992.82 138 0.51 2.98
16(4× 4) 3888/753 207 −26845.36 −11194.80 546 0.46 3.11
36(6× 6) 8748/1741 515 −61182.94 −24389.52 1226 0.45 3.15
64(8× 8) 15552/3137 959 −108974.69 −42644.74 2178 0.45 3.17
100(10× 10) 24300/4941 1539 −170825.04 −65962.02 3402 0.44 3.19

Source: own elaboration
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CONCLUSION

The path-following interior point algorithm was used for solving the Stokes prob-
lem with the stick-slip boundary condition. The inner linear systems was solved by the
preconditioned projected conjugate gradient method with the oblique projector as the
preconditioner. Its definition depends on the choice of a diagonal matrix. It was exper-
imentally shown that the diagonal of the dual Hessian leads to the best performance of
computations. It is relatively surprising, since it contains the negative diagonal entries
and it is not positive definite, as it is required by theory.
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PRECONDITIONING IN THE PATH-FOLLOWING ALGORITHM FOR THE
STOKES FLOW WITH STICK-SLIP CONDITIONS

Abstract: The Stokes problem with the stick-slip boundary condition is solved by the mixed
finite element method combined with the TFETI method. An interior point method for the min-
imization subject to box and equality constraints is used. The preconditioned projected conjugate
gradient method solves the inner linear systems. The preconditioners are tested experimentally.
The aim of our research is to develop efficient solvers for modelling of a flow over hydrophobic
walls that exhibits applications in engineering areas including biomedical modelling or transport
of fluid.

Keywords: Stokes problem; stick-slip condition; interior point method; TFETI method.

PŘEDPODMÍNĚNÍ ALGORITMU SLEDOVÁNÍ CESTY PRO STOKESOVO
PROUDĚNÍ SE SKLUZOVOU PODMÍNKOU

Abstrakt: Stokesova úloha se skluzovou podmínkou je řešena smíšenou metodou konečných
prvků kombinovanou s TFETI metodou. Výpočet řešení se provádí metodou vnitřních bodů urče-
nou k minimalizaci s oboustraným omezením a rovnostní vazbou. Předpodmíněná projektovaná
metoda sdružených gradientů se používá pro řešení vnitřních lineárních soustav. Účinost předpod-
miňovačů se testuje experimentálně. Cílem výzkumu je vyvinout efektivní řešiče pro modelování
proudění po hydrofobních stěnách, což nachází uplatnění v inženýrských oblastech zahrnujících
modelování v biomedicíně nebo při přenosu tekutin.

Klíčová slova: Stokesova úloha; skluzová podmínka; metoda vnitřních bodů; TFETI metoda.
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