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MODERN TAYLOR SERIES METHOD IN
NUMERICAL INTEGRATION: PART 1

36.1 INTRODUCTION

The paper deals with the solution of technical initial value problems (IVPs) repre-
senting the problems which arise from common technical practice (especially from elec-
trical and mechanical engineering). To solve technical IVPs means to find the numerical
solution of the system of ordinary differential equations (ODEs).

The best-known and most accurate method of calculating a new value of the nu-
merical solution of ODE [7]:

y′ = f(t, y), y(t0) = y0 , (36.1)

is to construct the Taylor series in the form

yn+1 = yn + h · f(tn, yn) + h2

2! · f
′(tn, yn) + . . .+ hp

p! · f
(p−1)(tn, yn), (36.2)

where h is the integration step.
The Taylor series can be very effictively implemented as the variable step/variable

order numerical method (see TKSL software [14]). The Modern Taylor series method
(MTSM) [10] is based on a recurrent calculation of the Taylor series terms for each time
step (h). Therefore, the complicated calculation of higher order derivatives (much criti-
cised in the literature) does not need to be performed, but rather the value of each Taylor
series term is numerically calculated [10]. Equation (36.2) can then be rewritten in the
form (36.3).

yn+1 = DY 0 +DY 1 +DY 2 + · · ·+DY p (36.3)

Theoretically, it is possible to compute the solution of homogeneous linear differential
equations with constant coefficients with arbitrary order (use the arbitrary number of
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Taylor series terms) with arbitrary accuracy. The resulting system of linear equations can
be effectively solved either sequentially or in parallel.

An important part of the method is an automatic integration order setting (ORD =
p), i.e. using as many Taylor series terms as the defined accuracy requires. Thus it is
common that the computation uses different numbers of Taylor series terms for different
time steps of constant length.

The following paper is divided into several sections, which consider concrete technical
IVPs and effective usage of MTSM. In Section 36.2, the numerical solution of a partial
differential equation (wave equation) using higher order space approximations schemes and
combination of higher order MTSM is shown. The next section is focused on the multiple
integral computation using transformation to ODEs, and then MTSM is effectively used
for high-accurate computation.

Several papers focus on computer implementations of the Taylor series method in a
variable order and variable step context (see, for instance TIDES software [3], implemented
in [16], TAYLOR [8] including detailed description of a variable step size version, ATOMF
[6], COSY INFINITY [4], DAETS [13]. The variable-stepsize variable-order scheme is also
described in [2] and [1], where simulations on a parallel computer are shown.

36.2 WAVE EQUATION

The wave equation (36.4) is an important hyperbolic partial differential equation
(PDE), and it is widely used in many technical problems (vibration of the string, AC
circuits, electromagnetism, etc.).

∂2y(x, t)
∂x2 = ∂2y(x, t)

∂t2
(36.4)

Let Ω be a domain of PDE (x, t) = 〈0, π〉 × 〈0, tmax〉 and the homogeneous Dirichlet
boundary conditions on ∂Ω are defined as follows:

y(0, t) = 0 , y(π, t) = 0 . (36.5)

where tmax is the maximum simulation time. The Cauchy initial values follow:

y(x, 0) = sin(x) , ∂y(x, 0)
∂t

= 0 . (36.6)

The wave equation describes a vibration of an ideal string of specified length. The string
is fixed at both ends to x-axis (see boundary values (36.5)). The string is released at time
t = 0, and the initial velocity of the string is zero. The sine wave is used as a model of
the string. The analytical solution is in the form:

y = cos(πt) sin(x) . (36.7)
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The numerical methods for solving PDEs are based on approximations of the deriva-
tives by differences. The method of lines is the technique which uses finite differences for
the approximation of derivatives with respect to all the independent variables except one.

Using this method, it is possible to transform PDE into the system of ODEs, which
can be solved using MTSM with high accuracy [9, 15]. The following subsections of the
paper show the construction of a higher order difference formulae directly using Taylor
series terms.

36.2.1 Types of Difference Formulae
Central difference formula uses the same number of points to the left and to the

right of the current point of the calculation. To calculate the derivatives at point yk,
points yk−2, yk−1, yk, yk+1 and yk+2 are used, and the steps sizes −2h,−h, h, 2h are used
(see Fig. 36.1). In this case yk = y2. Let l be a number of points to the left of the current
point of the calculation and r be a number of points to the right. Hence, the respective
setting is l = 2 and r = 2.

Fig. 36.1 Central difference formula for yk = y2
Source: own elaboration

Taylor series (36.8), (36.9), (36.10) and (36.11) for the neighbouring point yk are as follows:

yk−2 = yk + (−2h)y′k + (−2h)2

2! y′′k + (−2h)3

3! y′′′k + (−2h)4

4! y′′′′k , (36.8)

yk−1 = yk + (−h)y′k + (−h)2

2! y′′k + (−h)3

3! y′′′k + (−h)4

4! y′′′′k , (36.9)

yk+1 = yk + hy′k + h2

2! y
′′
k + h3

3! y
′′′
k + h4

4! y
′′′′
k , (36.10)

yk+2 = yk + 2hy′k + (2h)2

2! y′′k + (2h)3

3! y′′′k + (2h)4

4! y′′′′k . (36.11)

The system of equations can be expressed in matrix form (36.12). Subsequently, we
obtain the first four terms of the Taylor series for point yk (denoted as DY 1, DY 2, DY 3
and DY 4).

DY 1
DY 2
DY 3
DY 4

 =


−2 (−2)2 (−2)3 (−2)4

−1 (−1)2 (−1)3 (−1)4

1 12 13 14

2 22 23 24


−1

·


yk−2 − yk

yk−1 − yk

yk+1 − yk

yk+2 − yk

 (36.12)
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Forward difference formula uses only the points to the right of the current point.
Hence, for the calculation of the derivatives at point yk, we take points yk+1, yk+2, yk+3 and
yk+4. Only positive step sizes h, 2h, 3h, 4h are used in this case. The setting for five-point
approximation is l = 0, r = 4. Backward difference formula can be constructed similarly,
with the setting being l = 4, r = 0. More information can be found in [9] and [11].

36.2.2 Accuracy of the Calculation
Firstly, we discuss the accuracy of the calculation in the space domain and then in

the time domain. Let us denote n-point approximation as N and the number of segments
of the string as S.

There are two parameters affecting the space domain accuracy. The first parameter
is the space-step h(S). The second parameter is the order of the difference formulae N .

The absolute error between numerical and analytical solution for the symmetric
formulae in space domain is shown in Fig. 36.2 (left). The upper red function shows the
absolute error for N = 5 segments and S = 32 (h = π/S), where h is a step in space
domain. The lower blue function shows this error for N = 9 and S = 315 (h = π/S).
Note that these functions mostly remain at the same level. Higher deviation between the
numerical and analytical solution at the boundary of space domain is caused by using the
asymmetric difference formulae.

The absolute error for the forward difference formulae is shown in Fig. 36.2 (right).
The settings are the same as the settings for the central difference formulae.

Fig. 36.2 Central (left) and forward (right) difference formulae (space domain)
Source: own elaboration

The absolute error in the time domain is shown in Fig. 36.3. The upper red function
shows the absolute error for N = 3 and S = 10, the lower red function shows the absolute
error for N = 3 and S = 100. The error can be effectively decreased by an increase in the
order of the difference formula. The upper blue function shows the error for N = 5 and
S = 12. Furthermore, the lower blue function shows the error for N = 5 and S = 100.
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Cross-border exchange of experience in production engineering ...

2017
Volume 6

issue 4

Fig. 36.3 The absolute error between numerical and analytical solution (time domain)
Source: own elaboration

36.3 MULTIPLE INTEGRAL COMPUTATION

In this chapter, we transform the solution of definite integral F (x) =
∫ B

A

f(x) dx
into the ordinary differential equation

F ′(x) = f(x) , (36.13)

with initial condition F (A) = 0.
The IVP (36.13) can be solved using MTSM very effectively [5, 12].
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Fig. 36.4 Sampled integrals as a new function Ij = Ψ(jhy)
Source: own elaboration

36.3.1 Sampled Integrals
Given Ij(x) is a numerical solution of

∫ a

0 f(x, jhy)dx (all definite integral can be
transformed into equivalent integrals with zero lower bound) and py a number of samples
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in y axe, we can approximate a double integral with a sequence of approximated values
of a single definite integral computed precisely by MTSM (see Fig. 36.4).

Using ψ (approximated by values I0, I1, . . . , Ipy), we can approximate double integral

e(hy) = e(0) +
n∑

m=1

ψ(m−1)(0)
m! hm

y

...

e(jhy) = e((j − 1)hy) +
n∑

m=1

ψ(m−1)((j − 1)hy)
m! hm

y (36.14)

...

e(pyhy) = e((py − 1)hy) +
n∑

m=1

ψ(m−1)((py − 1)hy)
m! hm

y .

However, in this case we do not know the derivatives of ψ, so we must take a different
approach. We construct the following system:

A · x = b , (36.15)

where A =


1 12 . . . 1n

...
j j2 . . . jn

...
n n2 . . . nn

 , b =


I1 − I0

...
Ij − I0

...
In − I0

 , and x =



Dψ(1, 0)
Dψ(2, 0)
. . .

Dψ(j, 0)
. . .

Dψ(n, 0)


.

Solving a vector x, we get Dψ(j, 0), which can now be used to solve e(hy) in equa-
tions (36.14). We can calculate the remaining e(jhy) analogically, and the matrix A stays
the same, we only need to recalculate the vector b.

36.3.2 Multiple Integral
Generally, a multiple integral in the form∫ an

0
· · ·

∫ a1

0
g(x1, . . . , xn) dx1. . . dxn (36.16)

can be solved numerically the same way as in the case of the double integral by
iteratively reducing integral’s dimension. Numerical derivates (of a function f in general)
are computed analogically from sampled values f−l, . . . , f−1, f0, f1, . . . , fr at given times
−lh, . . . ,−h, 0, h, . . . , rh, n = r+ l+ 1. Using Taylor’s polynomials, we can construct the
following set of equations::
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∀i ∈ {−l,−l + 1, . . . ,−1, 0, 1, . . . , r − 1, r} :

fi = f0 +
n∑

m=1

imhm

m! f (m)(0) (36.17)

Expressing the system in the matrix form, we can compute function’s derivatives
and use them to reduce integral’s dimension.

36.3.3 Integration of an Exponential Function
The method was tested on the computation of the double integral of an exponential

function, i.e.
∫ 2

0

∫ 2
0 e

x+ydydx. The tests were run for different lengths of an integration
step, number of Taylor’s terms, and arithmetic precision. The precision is determined
by a number of bits used for a mantissa of each number. The numerical solution was
compared with the analytical solution of the double integral. The error of computation
for each test instance is shown in Tab. 36.1. For the fixed integration step and precision,
only a number of Taylor’s term with the smallest error is shown.

Tab. 36.1 Error of computation of
∫ 2

0
∫ 2

0 ex+ydydx

step no. of terms (ORD) precision [bits] error
0.2 11 400 1.13e-06
0.1 19 400 8.95e-20
0.05 39 400 6.88e-52
0.04 49 400 9.14e-70
0.02 99 800 8.02e-170
0.01 104 900 8.09e-208
0.005 94 900 4.59e-217
0.004 91 900 4.13e-220
0.002 85 900 3.49e-227

Source: own elaboration

CONCLUSION

MTSM as is implemented in TKSL software provides very accurate and stable so-
lution to the wide class of technical IVPs The next paper (Part 2) will be focused on
the effective parallel implementation and stiff systems solution using MTSM. The re-
search will be focused on the concrete engineering problems such as modelling of electric
circuits, closed-loop systems, fluid engineering etc.
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MODERN TAYLOR SERIES METHOD IN NUMERICAL INTEGRATION

Abstract: The paper deals with extremely exact, stable, and fast numerical solutions of systems
of differential equations. It also involves solutions of problems that can be reduced to solving
a system of differential equations. The approach is based on an original mathematical method,
which uses the Taylor series method for solving differential equations in a non-traditional way.
Even though this method is not much preferred in the literature, experimental calculations have
verified that the accuracy and stability of the Taylor series method exceed the currently used
algorithms for numerically solving differential equations. The Modern Taylor Series Method
(MTSM) is based on a recurrent calculation of the Taylor series terms for each time interval.
Thus, the complicated calculation of higher order derivatives (much criticised in the literature)
need not be performed but rather the value of each Taylor series term is numerically calculated.
An important part of the method is an automatic integration order setting, i.e. using as many
Taylor series terms as the defined accuracy requires. The aim of our research is to propose the
extremely exact, stable, and fast numerical solver for modelling technical initial value problems
that offers wide applications in many engineering areas including modelling of electrical circuits,
mechanics of rigid bodies, control loop feedback (controllers), etc.

Keywords: Taylor series method; ordinary differential equations; technical initial value prob-
lems.

MODERNÍ METODA TAYLOROVY ŘADY V NUMERICKÉ INTEGRACI

Abstrakt: Článek se zabývá přesným, stabilním a rychlým řešením soustav diferenciálních
rovnic. Soustavou diferenciálních rovnic lze reprezentovat velké množství reálných problémů.
Numerické řešení je založeno na unikátní numerické metodě, která netradičně využívá Tay-
lorovu řadu. I přesto, že tato metoda není v literatuře příliš preferována, experimentální výpočty
potvrdily, že přesnost a stabilita této metody přesahuje aktuálně používané numerické algoritmy
pro numerické řešení diferenciálních rovnic. Moderní metoda Taylorovy řady je založena na
rekurentním výpočtu členů Taylorovy řady v každém časovém intervalu. Derivace vyšších řádů
nejsou pro výpočet přímo využity, derivace jsou zahrnuty do členů Taylorovy řady, které se
počítají rekurentně numericky. Důležitou vlastností metody je automatická volba řádu metody
v závislosti na velikosti integračního kroku, tzn. je využito tolik členů Taylorovy řady, kolik
vyžaduje zadaná přesnost výpočtu. Cílem výzkumu je navrhnout velmi přesný, stabilní a rychlý
nástroj pro modelování technických počátečních problémů využitých v praxi při modelování elek-
trických obvodů, mechaniky tuhých těles, problematiky zpětnovazebního řízení a další..

Klíčová slova: metoda Taylorovy řady; obyčejné diferenciální rovnice; technické počáteční
úlohy.
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