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A NOTE ON CIRCULANT MATRICES OF
DEGREE 9

33.1 INTRODUCTION

To start with, recall the definition and basic properties of circulant matrices. The
matrix of degree n is called circulant matriz if its each row is cyclic shift of the row above,
i.e. it is the matrix of the form

o) a1 a2 o Ap—1

Qp—1 Qo ayp Qg Tt Ap—2

ap—1 Qo Qa1

a2

a1

3] T an—-1 Qo

It is obvious that such matrix is fully determined by its first row, so it is often
denoted by A = circ, (ag,a1,...,a,-1), and so it will be throughout this paper. From
the elements a; the matrix entry on j-th row and k-th column, i.e. the aj;, could be
computed as follows

Ajk = Gk—j (mod n)-

We could easily observe that sum and product of two circulant matrices is also
circulant matrix and thus the set of all circulant matrices of degree n, denoted by C,,
forms a ring.

Another useful and well known fact is that circulant matrices could be diagonalized

using Fourier matriz F,,, i.e. the matrix with

ij
vn 1,j=0,1,...n—1

)
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where (, is a primitive root of unity, i.e. ¢, =en = cos 2 4 jsin 20,
Now let D = FAF~!, with F the Fourier matrix of degree n and the circulant matrix
A = cire, (ag, aq, ..., a,—1) then D is a diagonal matrix with entries \; being eigenvalues

of the matrix A and equal to
)\i =ag+ algfl + CLQCYQLZ‘ + -+ an_lgi("_l). (331)

Since the Fourier matrix F is unitary, so the determinants |A| and |D| are equal
and we could write |A| = H:.L:_Ol Ai. For i =0 we hawe \g = a9 + a1 + -+ + a,_1 and \;
for i =1,2,...,n — 1 could be viewed as elements of the n-th cyclotomic field Q (¢,).

Since this connection is established, we could try to use circulant matrices to repre-
sent the elements and the arithmetics of the field Q (¢,).

This could be done quite straightforward in the case of n = [, [ is odd prime, because

in this case all \; for i =1,2,...,] — 1 are conjugates and
-1 -1
|A| = H/\z = (CLO +a+--- +an—1)H)\i = (CLO +a;+--- +an—1)NQ(Q)/Q ()\1) =
i=0 i=1

= (ao +a;+ -+ an—l) NQ(Q)/Q (ao + a’1<n -+ a%‘fb 4+ 4 anilgr(Lnfl)) ’

where Ng(,)/0() denotes the norm of the element a € Q (¢).

The problem left to solve in this case is that, the set 1,{, (7, ..., ll_l is not the
integral basis of Q (¢;). From the [-th cyclotomic polynomial ®; (z) = 1+x+a2+---+x!7!
we see ( + CF 4+ Cll_l = —1. Thus we could form the basis (;,(?,. .., ll_l, which

is the normal integral basis of Q((;). The representation of Q ((;) is then derived via
constructing factor ring of C;. For further details see paper [1].

In the case of n = pg, with two odd primes p,q, we deal with problems such as
the elements \; with ¢ = 0 (mod p) belongs to Q((,), A\; with ¢ = 0 mod ¢ belongs to
Q(¢p), and only \; with ged(i,n) = 0 belongs to Q((,). But once again choosing the
proper normal integral basis, ¢? with i coprime to n, and using more quite tedious work
we obtain representation of the field Q ((,) (see [2]).

The purpose of this paper is to show similiar way to represent the field Q (o).
Unfortunately for n = 9, and further on for n = 2, the n-th cyclotomic field is not tamely
ramified. Because of this it does not pose normal integral basis and has to work with

power integral basis.
33.2 BASIC OBSERVATIONS

The degree of the field Q ({y) is [Q ({y) : Q] = ¢ (9) = 6, its basis consists of elements
1,¢o,C2,. .., ¢S and every element v € Q ({y) could be written in the form v = co + 1o +
c2Ca+- - -+e5(y. Galois group of the extension Q ({y) /Q is generated by the automorphism

¢ :Q (&) — Q(&), ¢5C9'—>C927
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and is isomorphic with the multiplicative group (ZJ, ) :
Now observe how 7 conjugate ¢ () looks like.

2 5
p(v)=cotals+e (CS) +---+t0cs (CgQ) = co+ c1(] + 2y + c3C0 + el + 56

Using the fact ¢§ = 1, it is possible to replace (% by (o, but to replace ¢§,(J, ¢S
we have to use cyclotomic polynomial ®g (z) = 1 + 2 + 28, With the equality ®g ((g) =
1+ ¢35+ ¢§ = 0 we could write

G=-1-G G=-6G-G G=-G-G (33.2)

and similarly for higher powers. So we get

¢ (7) = (co — c3) + 3G + (c1 — c1) G — c3C + caly — caCl.

In the same manner we obtain complete set of v conjugates, denoted by ~; for
i=1,2,...6, with vy = 7,72 = ¢ (71) and so on.

Let now A be circulant matrix of degree 9, A = circg (ag, ay, ..., ag). As mentioned
above the eigenvalues of the matrix A are elements of the field Q ({y). This relationship
leads us to the idea of finding homomorphism between the ring Cy and the field Q ((o).

Define mapping 1 as follows

V:Co—Q (&), V:Ar—ag+aly+ali+--+ash.

To prove that ¢ is a homomorphism, we have to check that ¢ (A +B) = ¢ (A) +
1 (B) and that ¢ (A - B) =¥ (A) - ¢ (B). The first part is obvious.

To prove second one, observe that for the matrices A = cireg (ag, aq, .. .,as), B =
cireg (b, by, ..., bg) and C = A - B = circg (co, ¢4, - - ., cg) we have
=Y ab; (33.3)
i+j=k
(mod 9)

Multiplying elements «, 3 € Q((), with o = ag + a1(o + -+ + ag(§ and 8 =
bo + b1Co + -+ - + bgCy, we get v = co+ ¢1(o + - -+ + cg(5, with coefficients ¢ satisfying the
equation (33.3). This is because now we do not expressing elements in power basis and
(o exponents are reduced only by ¢§ = 1, i.e. modulo 9.

Surely the image of ¢ is entire field Q ({y), so ¢ is surjective. The example of
the matrices cireg (0,0,...,0) # circo(1,1,...,1) with ¢ (circe (0,0,...,0)) = 0 and
Y (cireg (1,1,...,1)) = 0 shows, that 1 is not injective.

Natural question arises here - what is the kernel of this homomorphism? Using the
equations (33.2) we could show that

1/} (C?:’I"Cg (x7y7 27177%2,%%2)) =T+ ygg + ZCQQ + x<3<3 +oeee y(g + Zgg =

33.4
oyt 2wl ey (G — ) + 2 (—G = () =0, (354
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From (33.4) we conclude how the kernel, ker(¢)), of the homomorphism 1 looks like.
It is the set Zg = {circo (x,y, z,x,y, 2, 2,y, 2) ; x,y, 2 € Q}.

As the set Zy is ideal in Cy, we could construct a factor ring Co/Zy. Every class of
this factor ring contains exactly one element of the form cireg (co, c1, ..., ¢s5,0,0,0), which
represents 7 = cg + ¢1(g + -+ - + ¢3¢ € Q (o). Asume that v # 0 and v~! = dy + di (o +
-+ dsCS € Q(C) is its inverse. If we denote C the class cireg (cg, i, - - ., ¢5,0,0,0) and D
the class the matrix circg (do, d1, ..., ds,0,0,0), then these two classes are inverses in the
factor ring Cy/Zy. This shows that Cy/Zy is in fact a field, moreover this field is isomorphic
with Q ((o), i.e. we have Cg/Zy ~ Q ({y).

Denote the set of all circulant matrices of the form A = circg (ag, aq,. .., as,0,0,0)
by C§. Clearly ¢ (C5) = Q ((y) and for A, B € C§ also ¢ (A +B) = ¢ (A) + ¢ (B) holds
true. But the product C = A - B need not belong to Cg.

So in order to get ring structure on the set C§ we have to define multiplication in
another way, let A = circg (ag,ay,...,as,0,0,0) and B = cireg (bg, by, ..., b5,0,0,0) and
a,  corresponding elements in Q ({g) then let product A « B be

A x« B = circg (ag, ay, .. .,as5,0,0,0) * circg (b, by, ..., b5,0,0,0) =
= circg (ag, - - . ,a5,0,0,0) - circg (bo, - .., bs,0,0,0) — circy (ce, c7,Cs, - - -, Co, C7,C8) =

. *
= CITCy (Co — Cg,C1 — C7,C2 — (8,3 — Cg,C4 — C7,C5 — €8, 0,0, 0) S Cgv

with ¢, = > itj=r a;b; as in (33.3).
(mod 9)
Now observe that with the help of (33.3) and (33.4) we could show

¢ (A * B) = ,lvb (A B — CiTCQ (667 ¢, ¢y, Cg, C1, Cg, Cg, C1, CS)) =

= (A-B) — ¢ (circy (cg, ¢7, cs, 6, €7, Cs, , Co, C7, C8) ) =

=¢Y(A-B)-0=v¢(A)-¢v(B)=a-5€Q(),
which means, that mapping 1 reduced to Cg as follows
V:Ch—Q(&), V:Ar——ag+aily+as+---+asy

is homomorphism again. Moreover since the kernel is trivial in this case we have also

proved that (C5, +,*) >~ Q (().
33.3 REPRESENTION OF THE FIELD Q ((o)

The isomorphisms and representations obtained in previous section is easy to derive
and handle, but unsufficient in some ways. For instance if the circulant matrix C =
circg (co, c1, ..., ¢5,0,0,0) represents element v € Q((y), then |C| is not equal to the
norm of vy, Ng(,) o (v)and the trace of the matrix C is not equal to the trace of the
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element v, Trg(c) 0 (7). Also multiplication in Cj and work with classes in Cy/Zy is quite
awkward.

So let now a = ag+a;(o+ - - -+ a5y and o' = g+ 1o + - - - + 25(] be its inverse
with corresponding matrices from Cj as described above, then we have equality

circy (agp, ay, ..., as,0,0,0) * circy (xg, 1, ..., 25,0,0,0) = circo (1,0,...,0),

which leads to system of linear equations

Co — Cg = Aoy — A5L1 — A4To — A3T3 + (-CLQ + (15) T4+ (—a1 + CL4> Ty5 = 1,

€1 — €7 = a1To + g1 — A5Ty — a4T3 — a3xy + (—ag + as) x5 = 0,

Cy — Cg = ApTo + a1T1 + ApT2 — AsT3 — ayT4 — a3T5 = 0,

C3 — Cg = Q3T + ((12 — CL5) T + (CLl — a4) T2 + (CLO — a3) T3 — ALy — A1T5 = 0,

Cy — C7 = Q4% + aA3T1 + ((12 — CL5) To + (Cll — &4) xr3 + (CLQ — ag) T4 — A2y = 0,

C5 — C8 = 5T + 41 + ag®s + (ag — as) r3 + (a1 — ag) T4 + (a9 — az) x5 = 0,

where ¢ = Y ivj=r a;x;. Write this system down as
(mod 9)

ag —as —Qy —as3 —ag + a5 —ai+ay Zg 1
aq ag —as —ay —ag —as + as 1 0
a9 aq Qo —das —Aay —das i) _ 0 (335)
a3 ag —as a; — a4 Qapg— as —Q9 —a xIs3 0
ay as Ay —as a1 — aqg Qg — A3 —ao T4 0
as ay as Ay — a5 a1 — Ay ag — as Ts 0

and denote T, the matrix occuring in the above equation (33.5).

To every element o = ag + a1(o + - -+ + az¢; € Q(() assign the matrix T, and
do = (ag,a1,...,as). And let Ct be set of all such matrices, i.e. Cpr = {To;a € Q ()} -
With this notation we have

Theorem 33.1. For the matrix T, it holds
1. Cr ~Q (o),

3. Nowoy/a (@) = [Tal,
4- Troe)/q (@) = Tr (Ta).
Proof. Multiplication by « defines Q-linear transformation

ta 1 Q () — Q (o), 7+ am.

The matrix T, is its representation with respect to the power integral basis 1, (g, . .., (5.
Hence the items 3,4 are just definitions of the norm and the trace in Q({y). The rest
follows from the discussion above. O]
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33.4 REPRESENTION OF THE SUBFIELDS OF THE FIELD Q ((y)

In order to get the representation for Q({y) subfields we would use the equa-
tions (33.5) again, but with the elements of the given subfield. As mentioned above
the Galois group of Q ((o) is isomorphic to multiplicative group Zg . This group has two
subgroups, thus there are two subfields of Q ({9). The subgroups are ({1,4,7},-) and
({1,8},-), and the corresponding subfields are Q ((3) and Q (Cg + ¢y 1) respectively.

33.4.1 The field Q (&3) € Q (&)

The field Q ((3) is clearly subfield of Q ({y), since (§ = (3. Its basis consists of 1, (3
and every o € Q ((3) could be written in the form a = ag + a;(3 = ag + a;(3. Hence with
(ap,0,0,a1,0,0) and (z0,0,0,x1,0,0) the system of linear equations (33.5) turns to be

apg 0 O —aq 0 0 To
0 a O 0 —aq 0 0
0 0 aqg 0 0 —aq 0
ap 0 0 ay— 0 0 T
0 a O 0 ag — aq 0 0
0 0 u 0 0 ag — aq 0

This system consists only two equations and could be written in the form

( ZT ao__‘“al ) ( ii’ ) - ( é ) . (33.6)

Denoting T, g(c,) the matrix of system (33.6) and 0q,q(c,) = (@0, a1) We get desired
representation of the element o = ag + a1(3 € Q ((3).

33.4.2 The field Q (¢ + ¢ ) € Q (&)

In the case of the field Q (Cg + Cg_l), the maximal real subfield of Q((y), is the
situation complicated by the fact that this field provides only power integral basis formed
by elements 1, (Cg + Cg’l) , (Cg + (9’1)2, i.e. for every element o € QQ (Cg + Cgl)

a=ag+ay (Go+C ') +ax(Go+ C§1)2 with ag, a1, az € Q.

But in order to place coefficients into equations (33.5) we have to rewrite this in
terms of the power integral basis 1, (g, (2, ..., (5 of the field Q ({o), this means to write

C+G =G+ =0—-¢—¢,
G+&G) =@ +2+¢ =2+C+d=2-G+C - ¢,

and hence
a = (ag + 2a2) + (a1 — a2) {9 — (a1 — as) ¢§ — azy — a1 (g (33.7)
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With coefficients of « as in (33.7) the system (33.5) become new system of linear

equations
ag + 2@2 aq a9 0 —as —a Xo + 2$2
a1 — as Qo+ 2@2 aq as 0 —a2 1 — X9
o — A a; — ao Qg+ 2&2 aq a9 0 —X1 + Xo
0 a9 aq Qo + 2(12 a; — as a9 — a1 0
—as 0 (45} aq ag + 2&2 a; — Ay —X2
—aq —a9 0 (05} aq ag + 2(12 —X1
Qo + 2(12 2&1 — Q9 2(10 —ap + 6(12
a; — as ag — ai + 3&2 —ag + 30,1 — 4@2
X
as —ay —ap+a; —3ay ag— 3a; + 4as 0
) ajl
0 0 0
T2
—a9 —aq —Qag — 3@2
—ay —ap — 3a2 as — 3aq

The equations in the above system are linearly dependent, its matrix rank is 3, but
using Gauss elimination, substracting multiples of row 5 and 6 from rows 1, 2, 3, we obtain

system of the following form and from it the representing matrix TQ( Got¢y oo

ao —as —ay
ar ag + 3as 3a; — as
as ai ag + 3as ag —as —ay
0 0 0 — Toc,Q(C9+C§1) =\|a ay+3ay 3a;—ay|. (33.8)
—a9 —ay —ap — 3as Qs aq ag + 3as

—ay —ag — 3@2 a9 — 3@1

33.4.3 Subfields representation

Let now K be subfield of Q (), i.e. Q(¢3) or Q (¢o + ¢y ') respectively, T, 5 and
dorc are as in (33.6) resp. in (33.8), and finally Cr x = {T4 k;a € K} be the set of all
such matrices, then

Theorem 33.2. For the matriz T, it holds
1. Crx ~ K,
2. Tok 08Kk = apK,
3. Nisg (@) = [Takl,

4. Trgg (o) = Tr (To k).

Proof. For the proof we use the same ideas as in the proof of Theorem 1. n
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33.5 EXAMPLE

Let now K = Q (Cg + Cg_l) and denote its basis elements e; = 1,69 = (o + (5 * and
g3 =2 = ((9 + ¢y 1)2 , then the corresponding matrices T and vectors § are

100 1
Toxk=|0101], dyx=1]0 1],
0 01 0
00 -1 0
’:[‘52 K = 1 0 3 ) 5&2,[{ = 1 )
01 0 0
0 -1 0 0
Tag,K - 0 3 -1 ) 5&3,]( = 0
1 0 3 1

Computing €3 as T, i - 0oy ;¢ Or Tey ;¢ - 0oy i yields (—1,3,0), ie. 5 = —1 + 3e,.
From this we may conclude that €5 —3e,+1 = 0 and that 2* —3x+1 is minimal polynomial
of (o + ¢y " and of the field Q (Cg + Cg_l).

Fora:3+2(C9+C9_1) + (<9+C9_1)2 € K we have

-1 2
TCY,K - 3T€1,K + 2T€2,K + T63,K - 2 6 5
1 2 6

Also we could compute Ng/g (o) = |To x| = 89, Trgg (a) = Tr (T x) = 15 and

OéQ
3 -1 =2 3
Ta,K : 5&,[( = 2 6 bt : 2 = (57 237 13) )
1 2 6 1

ie. a®=5+23(C+¢G1) +13(G+Gh"
All these computation are easy to handle, since we are using only basic matrix

operations and not the arithmetics of algebraic number fields.
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A NOTE ON CIRCULANT MATRICES OF DEGREE 9

Abstract: Circulant matrices provide quite a wide range of applications in many different
branches of mathematics, such as data and time-series analysis, signal processing or Fourier
transformation.

Huge number of results concerning circulant matrices could be found in algebraic number theory.
This is because we could construct factor ring isomorphic to the p-th cyclotomic field Q((p,) from
the ring of circulant matrices degree p, where p is a prime.

In this paper the connection between ring of circulant matrices of degree 9, Cy, and the cyclo-

tomic field Q ({g) is shown.

Keywords: circulant matriz, cyclotomic field

A NOTE ON CIRCULANT MATRICES OF DEGREE 9

Abstrakt: Cirkulantni matice nabizi sirokou skdlu aplikaci v mnoha rizngch odvétvich mate-
matiky, jako jsou analyza dat a casovy rad, zpracovdni signdli ¢i Fourierova transformace.
Dalsi vysledky vyuzivajici viastnosti cirkulantnich matic muzeme nalézt v algebraické teorii cisel,
coZ je ddno tim, Ze z okruhu cirkulantnich matic prvociselného stupné p, lze vytvorit faktorovy
okruh isomorfni s p-tym cyklotomickym télesem, Q((p).

V clanku je ukdzdan vztah mezi okruhem cirkulantnich matic stupné 9, Co, a devatym cyklo-

tomickym télesem.
Klicovd slova: cirkulantni matice, cyklotomické téleso

Date of submission of the article to the Editor: 04.2017
Date of acceptance of the article by the Editor: 05.2017

RNDr. Viktor DUBOVSKY, Ph.D.,

VSB — Technical University of Ostrava,

Department of Mathematics and Descriptive Geometry
17. listopadu 15, 708 33, Ostrava, Czech Republic

tel.: +420 597 324 152, e-mail: viktor.dubovsky@vsb.cz

251



