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A NOTE ON CIRCULANT MATRICES OF
DEGREE 9

33.1 INTRODUCTION

To start with, recall the definition and basic properties of circulant matrices. The
matrix of degree n is called circulant matrix if its each row is cyclic shift of the row above,
i.e. it is the matrix of the form

A =



a0 a1 a2 · · · an−1

an−1 a0 a1 a2 · · · an−2

an−1 a0 a1
. . . ...

... . . . a0
. . .

. . . . . . a2

a1

a1 · · · an−1 a0

.


It is obvious that such matrix is fully determined by its first row, so it is often

denoted by A = circn (a0, a1, . . . , an−1), and so it will be throughout this paper. From
the elements ai the matrix entry on j-th row and k-th column, i.e. the ajk, could be
computed as follows

ajk = ak−j (mod n).

We could easily observe that sum and product of two circulant matrices is also
circulant matrix and thus the set of all circulant matrices of degree n, denoted by Cn,
forms a ring.

Another useful and well known fact is that circulant matrices could be diagonalized
using Fourier matrix Fn, i.e. the matrix with

Fn =
(
ζ ijn√
n

)
i,j=0,1,...,n−1,
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where ζn is a primitive root of unity, i.e. ζn = e 2πi
n = cos 2πi

n
+ i sin 2πi

n
.

Now let D = FAF−1, with F the Fourier matrix of degree n and the circulant matrix
A = circn (a0, a1, . . . , an−1) then D is a diagonal matrix with entries λi being eigenvalues
of the matrix A and equal to

λi = a0 + a1ζ
i
n + a2ζ

2i
n + · · ·+ an−1ζ

i(n−1)
n . (33.1)

Since the Fourier matrix F is unitary, so the determinants |A| and |D| are equal
and we could write |A| =

∏n−1
i=0 λi. For i = 0 we hawe λ0 = a0 + a1 + · · · + an−1 and λi

for i = 1, 2, . . . , n− 1 could be viewed as elements of the n-th cyclotomic field Q (ζn).
Since this connection is established, we could try to use circulant matrices to repre-

sent the elements and the arithmetics of the field Q (ζn).
This could be done quite straightforward in the case of n = l, l is odd prime, because

in this case all λi for i = 1, 2, . . . , l − 1 are conjugates and

|A| =
l−1∏
i=0

λi = (a0 + a1 + · · ·+ an−1)
l−1∏
i=1

λi = (a0 + a1 + · · ·+ an−1) NQ(ζl)/Q (λ1) =

= (a0 + a1 + · · ·+ an−1) NQ(ζl)/Q
(
a0 + a1ζn + a2ζ

2
n + · · ·+ an−1ζ

(n−1)
n

)
,

where NQ(ζl)/Q(α) denotes the norm of the element α ∈ Q (ζl).
The problem left to solve in this case is that, the set 1, ζl, ζ2

l , . . . , ζ
l−1
l is not the

integral basis of Q (ζl). From the l-th cyclotomic polynomial Φl (x) = 1+x+x2+· · ·+xl−1

we see ζl + ζ2
l + · · · + ζ l−1

l = −1. Thus we could form the basis ζl, ζ2
l , . . . , ζ

l−1
l , which

is the normal integral basis of Q (ζl). The representation of Q (ζl) is then derived via
constructing factor ring of Cl. For further details see paper [1].

In the case of n = pq, with two odd primes p, q, we deal with problems such as
the elements λi with i ≡ 0 (mod p) belongs to Q (ζq), λi with i ≡ 0 mod q belongs to
Q (ζp), and only λi with gcd(i, n) = 0 belongs to Q (ζn). But once again choosing the
proper normal integral basis, ζ in with i coprime to n, and using more quite tedious work
we obtain representation of the field Q (ζn) (see [2]).

The purpose of this paper is to show similiar way to represent the field Q (ζ9).
Unfortunately for n = 9, and further on for n = l2, the n-th cyclotomic field is not tamely
ramified. Because of this it does not pose normal integral basis and has to work with
power integral basis.

33.2 BASIC OBSERVATIONS

The degree of the field Q (ζ9) is [Q (ζ9) : Q] = ϕ (9) = 6, its basis consists of elements
1, ζ9, ζ

2
9 , . . . , ζ

5
9 and every element γ ∈ Q (ζ9) could be written in the form γ = c0 + c1ζ9 +

c2ζ
2
9 +· · ·+c5ζ

5
9 . Galois group of the extension Q (ζ9) /Q is generated by the automorphism

φ : Q (ζ9) −→ Q (ζ9) , φ : ζ9 7−→ ζ2
9 ,
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and is isomorphic with the multiplicative group
(
Z×

9 , ·
)
.

Now observe how γ conjugate φ (γ) looks like.

φ (γ) = c0 + c1ζ
2
9 + c2

(
ζ2

9
)2 + · · ·+ c5

(
ζ2

9
)5 = c0 + c1ζ

2
9 + c2ζ

4
9 + c3ζ

6
9 + c4ζ

8
9 + c5ζ

10
9 .

Using the fact ζ9
9 = 1, it is possible to replace ζ10

9 by ζ9, but to replace ζ6
9 , ζ

7
9 , ζ

8
9

we have to use cyclotomic polynomial Φ9 (x) = 1 + x3 + x6. With the equality Φ9 (ζ9) =
1 + ζ3

9 + ζ6
9 = 0 we could write

ζ6
9 = −1− ζ3

9 , ζ7
9 = −ζ9 − ζ4

9 , ζ8
9 = −ζ2

9 − ζ5
9 (33.2)

and similarly for higher powers. So we get

φ (γ) = (c0 − c3) + c5ζ9 + (c1 − c4) ζ2
9 − c3ζ

3
9 + c2ζ

4
9 − c4ζ

5
9 .

In the same manner we obtain complete set of γ conjugates, denoted by γi for
i = 1, 2, . . . 6, with γ1 = γ, γ2 = φ (γ1) and so on.

Let now A be circulant matrix of degree 9, A = circ9 (a0, a1, . . . , a8). As mentioned
above the eigenvalues of the matrix A are elements of the field Q (ζ9). This relationship
leads us to the idea of finding homomorphism between the ring C9 and the field Q (ζ9).

Define mapping ψ as follows

ψ : C9 −→ Q (ζ9) , ψ : A 7−→ a0 + a1ζ9 + a2ζ
2
9 + · · ·+ a8ζ

8
9 .

To prove that ψ is a homomorphism, we have to check that ψ (A + B) = ψ (A) +
ψ (B) and that ψ (A ·B) = ψ (A) · ψ (B). The first part is obvious.

To prove second one, observe that for the matrices A = circ9 (a0, a1, . . . , a8), B =
circ9 (b0, b1, . . . , b8) and C = A ·B = circ9 (c0, c1, . . . , c8) we have

ck =
∑
i+j≡k
(mod 9)

aibj. (33.3)

Multiplying elements α, β ∈ Q (ζ9), with α = a0 + a1ζ9 + · · · + a8ζ
8
9 and β =

b0 + b1ζ9 + · · ·+ b8ζ
8
9 , we get γ = c0 + c1ζ9 + · · ·+ c8ζ

8
9 , with coefficients ck satisfying the

equation (33.3). This is because now we do not expressing elements in power basis and
ζ9 exponents are reduced only by ζ9

9 = 1, i.e. modulo 9.
Surely the image of ψ is entire field Q (ζ9), so ψ is surjective. The example of

the matrices circ9 (0, 0, . . . , 0) 6= circ9 (1, 1, . . . , 1) with ψ (circ9 (0, 0, . . . , 0)) = 0 and
ψ (circ9 (1, 1, . . . , 1)) = 0 shows, that ψ is not injective.

Natural question arises here - what is the kernel of this homomorphism? Using the
equations (33.2) we could show that

ψ (circ9 (x, y, z, x, y, z, x, y, z)) = x+ yζ9 + zζ2
9 + xζ3ζ

3
9 + · · ·+ yζ7

9 + zζ8
9 =

= x+ yζ9 + zζ2
9 + xζ3ζ

3
9 + · · ·+ y

(
−ζ9 − ζ4

9
)

+ z
(
−ζ2

9 − ζ5
9
)

= 0.
(33.4)
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From (33.4) we conclude how the kernel, ker(ψ), of the homomorphism ψ looks like.
It is the set I9 = {circ9 (x, y, z, x, y, z, x, y, z) ;x, y, z ∈ Q}.

As the set I9 is ideal in C9, we could construct a factor ring C9/I9. Every class of
this factor ring contains exactly one element of the form circ9 (c0, c1, . . . , c5, 0, 0, 0), which
represents γ = c0 + c1ζ9 + · · · + c5ζ

5
9 ∈ Q (ζ9). Asume that γ 6= 0 and γ−1 = d0 + d1ζ9 +

· · ·+d5ζ
5
9 ∈ Q (ζ9) is its inverse. If we denote C̄ the class circ9 (c0, c1, . . . , c5, 0, 0, 0) and D̄

the class the matrix circ9 (d0, d1, . . . , d5, 0, 0, 0), then these two classes are inverses in the
factor ring C9/I9. This shows that C9/I9 is in fact a field, moreover this field is isomorphic
with Q (ζ9), i.e. we have C9/I9 ' Q (ζ9).

Denote the set of all circulant matrices of the form A = circ9 (a0, a1, . . . , a5, 0, 0, 0)
by C∗

9 . Clearly ψ (C∗
9) = Q (ζ9) and for A,B ∈ C∗

9 also ψ (A + B) = ψ (A) + ψ (B) holds
true. But the product C = A ·B need not belong to C∗

9 .
So in order to get ring structure on the set C∗

9 we have to define multiplication in
another way, let A = circ9 (a0, a1, . . . , a5, 0, 0, 0) and B = circ9 (b0, b1, . . . , b5, 0, 0, 0) and
α, β corresponding elements in Q (ζ9) then let product A ∗B be

A ∗B = circ9 (a0, a1, . . . , a5, 0, 0, 0) ∗ circ9 (b0, b1, . . . , b5, 0, 0, 0) =
= circ9 (a0, . . . , a5, 0, 0, 0) · circ9 (b0, . . . , b5, 0, 0, 0)− circ9 (c6, c7, c8, . . . , c6, c7, c8) =
= circ9 (c0 − c6, c1 − c7, c2 − c8, c3 − c6, c4 − c7, c5 − c8, 0, 0, 0) ∈ C∗

9 ,

with ck =
∑

i+j≡k
(mod 9)

aibj as in (33.3).

Now observe that with the help of (33.3) and (33.4) we could show

ψ (A ∗B) = ψ (A ·B− circ9 (c6, c7, c8, c6, c7, c8, c6, c7, c8)) =
= ψ (A ·B)− ψ (circ9 (c6, c7, c8, c6, c7, c8, , c6, c7, c8)) =
= ψ (A ·B)− 0 = ψ (A) · ψ (B) = α · β ∈ Q (ζ9) ,

which means, that mapping ψ reduced to C∗
9 as follows

ψ : C∗
9 −→ Q (ζ9) , ψ : A 7−→ a0 + a1ζ9 + a2ζ

2
9 + · · ·+ a5ζ

5
9

is homomorphism again. Moreover since the kernel is trivial in this case we have also
proved that (C∗

9 ,+, ∗) ' Q (ζ9).

33.3 REPRESENTION OF THE FIELD Q (ζ9)

The isomorphisms and representations obtained in previous section is easy to derive
and handle, but unsufficient in some ways. For instance if the circulant matrix C =
circ9 (c0, c1, . . . , c5, 0, 0, 0) represents element γ ∈ Q (ζ9), then |C| is not equal to the
norm of γ, NQ(ζ9)/Q (γ)and the trace of the matrix C is not equal to the trace of the
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element γ, TrQ(ζ9)/Q (γ). Also multiplication in C∗
9 and work with classes in C9/I9 is quite

awkward.
So let now α = a0 + a1ζ9 + · · ·+ a5ζ

5
9 and α−1 = x0 + x1ζ9 + · · ·+ x5ζ

5
9 be its inverse

with corresponding matrices from C∗
9 as described above, then we have equality

circ9 (a0, a1, . . . , a5, 0, 0, 0) ∗ circ9 (x0, x1, . . . , x5, 0, 0, 0) = circ9 (1, 0, . . . , 0) ,

which leads to system of linear equations

c0 − c6 = a0x0 − a5x1 − a4x2 − a3x3 + (−a2 + a5)x4 + (−a1 + a4)x5 = 1,
c1 − c7 = a1x0 + a0x1 − a5x2 − a4x3 − a3x4 + (−a2 + a5)x5 = 0,
c2 − c8 = a2x0 + a1x1 + a0x2 − a5x3 − a4x4 − a3x5 = 0,
c3 − c6 = a3x0 + (a2 − a5)x1 + (a1 − a4)x2 + (a0 − a3)x3 − a2x4 − a1x5 = 0,
c4 − c7 = a4x0 + a3x1 + (a2 − a5)x2 + (a1 − a4)x3 + (a0 − a3)x4 − a2x5 = 0,
c5 − c8 = a5x0 + a4x1 + a3x2 + (a2 − a5)x3 + (a1 − a4)x4 + (a0 − a3)x5 = 0,

where ck =
∑

i+j≡k
(mod 9)

aixj. Write this system down as



a0 −a5 −a4 −a3 −a2 + a5 −a1 + a4

a1 a0 −a5 −a4 −a3 −a2 + a5

a2 a1 a0 −a5 −a4 −a3

a3 a2 − a5 a1 − a4 a0 − a3 −a2 −a1

a4 a3 a2 − a5 a1 − a4 a0 − a3 −a2

a5 a4 a3 a2 − a5 a1 − a4 a0 − a3





x0

x1

x2

x3

x4

x5


=



1
0
0
0
0
0


(33.5)

and denote Tα the matrix occuring in the above equation (33.5).
To every element α = a0 + a1ζ9 + · · · + a5ζ

5
9 ∈ Q (ζ9) assign the matrix Tα and

δα = (a0, a1, . . . , a5). And let CT be set of all such matrices, i.e. CT = {Tα;α ∈ Q (ζ9)} .
With this notation we have

Theorem 33.1. For the matrix Tα it holds

1. CT ' Q (ζ9),

2. Tα · δβ = δα·β,

3. NQ(ζ9)/Q (α) = |Tα|,

4. TrQ(ζ9)/Q (α) = Tr (Tα).

Proof. Multiplication by α defines Q-linear transformation

tα : Q (ζ9) −→ Q (ζ9) , x 7−→ αx.

The matrix Tα is its representation with respect to the power integral basis 1, ζ9, . . . , ζ
5
9 .

Hence the items 3, 4 are just definitions of the norm and the trace in Q (ζ9). The rest
follows from the discussion above.

247



2017 Editor: M.J. LIGARSKI

33.4 REPRESENTION OF THE SUBFIELDS OF THE FIELD Q (ζ9)

In order to get the representation for Q (ζ9) subfields we would use the equa-
tions (33.5) again, but with the elements of the given subfield. As mentioned above
the Galois group of Q (ζ9) is isomorphic to multiplicative group Z×

9 . This group has two
subgroups, thus there are two subfields of Q (ζ9). The subgroups are ({1, 4, 7} , ·) and
({1, 8} , ·), and the corresponding subfields are Q (ζ3) and Q

(
ζ9 + ζ−1

9
)
respectively.

33.4.1 The field Q (ζ3) ⊂ Q (ζ9)
The field Q (ζ3) is clearly subfield of Q (ζ9), since ζ3

9 = ζ3. Its basis consists of 1, ζ3

and every α ∈ Q (ζ3) could be written in the form α = a0 + a1ζ3 = a0 + a1ζ
3
9 . Hence with

(a0, 0, 0, a1, 0, 0) and (x0, 0, 0, x1, 0, 0) the system of linear equations (33.5) turns to be

a0 0 0 −a1 0 0
0 a0 0 0 −a1 0
0 0 a0 0 0 −a1

a1 0 0 a0 − a1 0 0
0 a1 0 0 a0 − a1 0
0 0 a1 0 0 a0 − a1





x0

0
0
x1

0
0


This system consists only two equations and could be written in the form(

a0 −a1

a1 a0 − a1

)(
x0

x1

)
=
(

1
0

)
. (33.6)

Denoting Tα,Q(ζ3) the matrix of system (33.6) and δα,Q(ζ3) = (a0, a1) we get desired
representation of the element α = a0 + a1ζ3 ∈ Q (ζ3).

33.4.2 The field Q
(
ζ9 + ζ−1

9
)
⊂ Q (ζ9)

In the case of the field Q
(
ζ9 + ζ−1

9
)
, the maximal real subfield of Q (ζ9), is the

situation complicated by the fact that this field provides only power integral basis formed
by elements 1,

(
ζ9 + ζ−1

9
)
,
(
ζ9 + ζ−1

9
)2, i.e. for every element α ∈ Q

(
ζ9 + ζ−1

9
)

α = a0 + a1
(
ζ9 + ζ−1

9
)

+ a2
(
ζ9 + ζ−1

9
)2 with a0, a1, a2 ∈ Q.

But in order to place coefficients into equations (33.5) we have to rewrite this in
terms of the power integral basis 1, ζ9, ζ

2
9 , . . . , ζ

5
9 of the field Q (ζ9), this means to write

ζ9 + ζ−1
9 = ζ9 + ζ8

9 = ζ9 − ζ2
9 − ζ5

9 ,(
ζ9 + ζ−1

9
)2 = ζ2

9 + 2 + ζ16
9 = 2 + ζ2

9 + ζ7
9 = 2− ζ9 + ζ2

9 − ζ4
9 ,

and hence
α = (a0 + 2a2) + (a1 − a2) ζ9 − (a1 − a2) ζ2

9 − a2ζ
4
9 − a1ζ

5
9 . (33.7)
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With coefficients of α as in (33.7) the system (33.5) become new system of linear
equations

a0 + 2a2 a1 a2 0 −a2 −a1

a1 − a2 a0 + 2a2 a1 a2 0 −a2

a2 − a1 a1 − a2 a0 + 2a2 a1 a2 0
0 a2 a1 a0 + 2a2 a1 − a2 a2 − a1

−a2 0 a2 a1 a0 + 2a2 a1 − a2

−a1 −a2 0 a2 a1 a0 + 2a2





x0 + 2x2

x1 − x2

−x1 + x2

0
−x2

−x1


=

=



a0 + 2a2 2a1 − a2 2a0 − a1 + 6a2

a1 − a2 a0 − a1 + 3a2 −a0 + 3a1 − 4a2

a2 − a1 −a0 + a1 − 3a2 a0 − 3a1 + 4a2

0 0 0
−a2 −a1 −a0 − 3a2

−a1 −a0 − 3a2 a2 − 3a1



 x0

x1

x2



The equations in the above system are linearly dependent, its matrix rank is 3, but
using Gauss elimination, substracting multiples of row 5 and 6 from rows 1, 2, 3, we obtain
system of the following form and from it the representing matrix TQ(ζ9+ζ−1

9 ),α

a0 −a2 −a1

a1 a0 + 3a2 3a1 − a2

a2 a1 a0 + 3a2

0 0 0
−a2 −a1 −a0 − 3a2

−a1 −a0 − 3a2 a2 − 3a1


→ Tα,Q(ζ9+ζ−1

9 ) =

a0 −a2 −a1

a1 a0 + 3a2 3a1 − a2

a2 a1 a0 + 3a2

 . (33.8)

33.4.3 Subfields representation
Let now K be subfield of Q (ζ9), i.e. Q (ζ3) or Q

(
ζ9 + ζ−1

9
)
respectively, Tα,K and

δα,K are as in (33.6) resp. in (33.8), and finally CT,K = {Tα,K ;α ∈ K} be the set of all
such matrices, then

Theorem 33.2. For the matrix Tα it holds

1. CT,K ' K,

2. Tα,K · δβ,K = δα·β,K,

3. NK/Q (α) = |Tα,K |,

4. TrK/Q (α) = Tr (Tα,K).

Proof. For the proof we use the same ideas as in the proof of Theorem 1.
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33.5 EXAMPLE

Let now K = Q
(
ζ9 + ζ−1

9
)
and denote its basis elements ε1 = 1, ε2 = ζ9 + ζ−1

9 and
ε3 = ε2

2 =
(
ζ9 + ζ−1

9
)2 , then the corresponding matrices T and vectors δ are

Tε1,K =

 1 0 0
0 1 0
0 0 1

 , δε1,K =

 1
0
0

 ,

Tε2,K =

 0 0 −1
1 0 3
0 1 0

 , δε2,K =

 0
1
0

 ,

Tε3,K =

 0 −1 0
0 3 −1
1 0 3

 , δε3,K =

 0
0
1

 .

Computing ε3
2 as Tε2,K · δε3,K or Tε3,K · δε2,K yields (−1, 3, 0), i.e. ε3

2 = −1 + 3ε2.
From this we may conclude that ε3

2−3ε2+1 = 0 and that x3−3x+1 is minimal polynomial
of ζ9 + ζ−1

9 and of the field Q
(
ζ9 + ζ−1

9
)
.

For α = 3 + 2
(
ζ9 + ζ−1

9
)

+
(
ζ9 + ζ−1

9
)2 ∈ K we have

Tα,K = 3Tε1,K + 2Tε2,K + Tε3,K =

 3 −1 2
2 6 5
1 2 6

 .

Also we could compute NK/Q (α) = |Tα,K | = 89, TrK/Q (α) = Tr (Tα,K) = 15 and
α2 as

Tα,K · δα,K =

 3 −1 −2
2 6 5
1 2 6

 ·
 3

2
1

 = (5, 23, 13) ,

i.e. α2 = 5 + 23
(
ζ9 + ζ−1

9
)

+ 13
(
ζ9 + ζ−1

9
)2
.

All these computation are easy to handle, since we are using only basic matrix
operations and not the arithmetics of algebraic number fields.

REFERENCES

1. J. Kostra. “A Note on Representation of Cyclotomic Fields”, Acta Mathematica et
Informatica Universitatis Ostraviensis, Vol. 4, 1996, p. 29–35.

2. M. Pomp, R. Havelek. “On representation of cyclotomic fields Q (ζpq)”, Acta Mathe-
matica et Informatica Universitatis Ostraviensis, Vol. 7, 1999, p. 71–78.

250



SYSTEMY WSPOMAGANIA w INŻYNIERII PRODUKCJI
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A NOTE ON CIRCULANT MATRICES OF DEGREE 9

Abstract: Circulant matrices provide quite a wide range of applications in many different
branches of mathematics, such as data and time-series analysis, signal processing or Fourier
transformation.
Huge number of results concerning circulant matrices could be found in algebraic number theory.
This is because we could construct factor ring isomorphic to the p-th cyclotomic field Q(ζp) from
the ring of circulant matrices degree p, where p is a prime.
In this paper the connection between ring of circulant matrices of degree 9, C9, and the cyclo-
tomic field Q (ζ9) is shown.

Keywords: circulant matrix, cyclotomic field

A NOTE ON CIRCULANT MATRICES OF DEGREE 9

Abstrakt: Cirkulantní matice nabízí širokou škálu aplikací v mnoha různých odvětvích mate-
matiky, jako jsou analýza dat a časový řad, zpracování signálů či Fourierova transformace.
Další výsledky využívající vlastností cirkulantních matic můžeme nalézt v algebraické teorii čísel,
což je dáno tím, že z okruhu cirkulantních matic prvočíselného stupně p, lze vytvořit faktorový
okruh isomorfní s p-tým cyklotomickým tělesem, Q(ζp).
V článku je ukázán vztah mezi okruhem cirkulantních matic stupně 9, C9, a devátým cyklo-
tomickým tělesem.
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