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ON HOMOGENEOUS FUNCTIONS IN
SECOND-ORDER FIELD THEORY

31.1 INTRODUCTION

In this paper we analyse properties of functions, which are invariant with respect
to diffeomorphisms of their domains of definition, and give rise to variational functionals
independent of parametrizations. This leads to the (higher-order) homogeneity concept,
expressed by the well-known Zermelo conditions (see e.g. McKiernan [7], Kawaguchi [3],
Matsyuk [6], Crampin and Saunders [1]); physical meaning of these conditions was studied
by Kondo [4]. To this purpose we use an elementary version of the Ehresmann’s theory
of jets, differential groups and jet prolongations of curves and tangent spaces (see Grigore
and Krupka [2], Krupka and Janyška [5], and references therein). On this basis, we
introduce the positive homogeneity concept for functions, depending on mappings and
their (partial) derivatives of first and second order.

Our main results consist in a characterization of second-order Lagrangians whose
extremals are set-solutions, and in the study of a class of variational second-order par-
tial differential equations. We show that variational systems with positive homogeneous
Lagrangians are defined by positive homogeneous functions, and vice versa. Variational
foundations of Finsler geometry, where fundamental functions satisfies the positive homo-
geneity condition, could be extended by means of the presented theory.

This paper extends the work Urban and Krupka [8] to mappings between Euclidean
spaces (field theory). Throughout the paper the proofs are omitted.

31.2 REGULAR VELOCITIES OVER EUCLIDEAN SPACES

In this section we consider the mappings γ : Rn → Rm+n, n ≥ 2, m ≥ 1, between
Euclidean spaces, which associate a space endowed with a finite-dimensional Lie group ac-
tion, the reparametrization of mappings. The canonical coordinates on Rm+n are denoted
by yK , K = 1, 2, . . . ,m+ n.
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By an n-velocity of order 2 at a point y ∈ Rm+n we mean a 2-jet J2
0γ with source

0 ∈ Rn and target γ(0) = y. If γ is a representative of J2
0γ, then the equivalence class J2

0γ

is identified with the ordered collection of numbers (yK(J2
0γ), yKj (J2

0γ), yKjk(J2
0γ)), where

1 ≤ j ≤ k ≤ n, defined by the derivatives of the mapping (xi) → yKγ(xi) at the origin
0 ∈ Rn, i.e.

yK(J2
0γ) = yK(γ(0)), yKj (J2

0γ) = Dj(yKγ)(0),
yKjk(J2

0γ) = DkDj(yKγ)(0).
(31.1)

The set of n-velocities of order 2 at y ∈ Rm+n is the jet space J2
(0,y)(Rn,Rm+n), and we

denote
T 2
nRm+n =

⋃
y∈Rm+n

J2
(0,y)(Rn,Rm+n).

The canonical jet projection τ 2,0 : T 2
nRm+n → Rm+n, is a surjective mapping defined by

τ 2,0(J2
0γ) = γ(0). We consider the set T 2

nRm+n of velocities of order 2 with standard
geometric structures. The functions (yK , yKj , yKjk), defined by (31.1), are the (global)
canonical coordinates on T 2

nRm+n. The canonical trivialization of T 2
nRm+n is the mapping

T 2
nRm+n 3 J2

0γ 7→ (γ(0), J2
0 trψγ(0)ψγ) ∈ Rm+n × J2

(0,0)(Rn,Rm+n). (31.2)

In particular, the mapping (31.2) shows that T 2
nRm+n is a trivial vector bundle with

base Rm+n, projection τ 2,0 : T 2
nRm+n → Rm+n, and type fiber J2

0,0(Rn,Rm+n). We call
T 2
nRm+n the manifold of n-velocities of order 2 over Rm+n.

Recall now the concept of the differential group of Rn. Consider the manifold
J2

(0,0)(Rn,Rn) of 2-jets with source and target at the origin 0 ∈ Rn. Let αi denotes
the i-th component of the mapping α : Rn → Rn for which α(0) = 0. For every
J2

0α ∈ J2
(0,0)(Rn,Rn), we define real-valued functions aij and aijk on Jr0,0(Rn,Rn) by

aij(J2
0α) = Djα

i(0), aijk(J2
0α) = DkDjα

i(0), (31.3)

where 1 ≤ j ≤ k ≤ n. These functions are called the canonical coordinates, and constitute
a global chart on J2

(0,0)(Rn,Rn). The invertible jets form a subset of J2
(0,0)(Rn,Rn),

consisting of the 2-jets J2
0α represented by diffeomorphisms α, which we denote by

L2
n = Imm J2

(0,0)(Rn,Rn) = {J2
0α ∈ J2

(0,0)(Rn,Rn) | det(aij(J2
0α)) 6= 0}.

Clearly, L2
n is dense and open subset in J2

(0,0)(Rn,Rn). Restricting the functions aij, aijk
(31.3) to the domain L2

n, we obtain the canonical global coordinates on L2
n. A mapping

L2
n × L2

n 3 (J2
0α, J

2
0β) 7→ J2

0α ◦ J2
0β = J2

0 (α ◦ β) ∈ L2
n, (31.4)

defined by the composition of jets, represents a group multiplication on L2
n. The set L2

n

with the group multiplication (31.4) has a Lie group structure, and it is called the second
differential group of Rn.
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The manifold T 2
nRm+n is endowed with the right action of the differential group L2

n

given by composition of jets,

T 2
nRm+n × L2

n 3 (J2
0γ, J

2
0α) 7→ J2

0γ ◦ J2
0α = J2

0 (γ ◦ α) ∈ T 2
nRm+n, (31.5)

In order to describe this action in canonical coordinates, we denote

ȳK(Jr0γ) = yK(Jr0 (γ ◦ α)), ȳKj (Jr0γ) = yKj (Jr0 (γ ◦ α)), ȳKjk(Jr0γ) = yKjk(Jr0 (γ ◦ α)).

Lemma 31.1. The group action (31.5) of the differential group L2
n onto T 2

nRm+n is
expressed by the equations

ȳK = yK , ȳKj = yKp a
p
j , ȳKjk = yKpqa

p
ja
q
k + yKp a

p
jk. (31.6)

Any differentiable mapping γ with values in Rm+n, defined on an open subset U ⊂
Rn, associates the mapping

U 3 x 7→ T 2
nγ(x) = J2

0 (γ ◦ tr−x) ∈ T 2
nRm+n, (31.7)

called the (second) jet prolongation of the mapping γ. For every isomorphism µ : V → U

of open subsets of Rn, and every point z ∈ V , J2
0 (trµ(z)◦µ◦tr−z) belongs to the differential

group L2
n. Denote

µz = trµ(z) ◦ µ ◦ tr−z, µ(2)(z) = J2
0µz. (31.8)

In the following lemma we describe the formula for reparametrizations of the domain of
definition of T 2

nγ.

Lemma 31.2. For any diffeomorphism µ : V → U of open subsets of Rn, the jet prolon-
gation T 2

nγ of a mapping γ : U → Rm+n satisfies

T 2(γ ◦ µ)(z) = T 2γ(µ(z)) ◦ µ(2)(z). (31.9)

We restrict our attention to mappings which are immersions (i.e. their tangent
mappings are injective). J2

0γ ∈ T 2
nRm+n is called regular, if every representative of J2

0γ is
an immersion at 0 ∈ Rn. The set ImmT 2

nRm+n of regular velocities form an open subset
of T 2

nRm+n, and with the open submanifold structure ImmT 2
nRm+n is called the mani-

fold of regular n-velocities of order 2 over Rm+n. Restricting the canonical coordinates
(yK , yKj , yKjk), we get the canonical charts on ImmT 2

nRm+n, induced by the canonical atlas
of T 2

nRm+n.
The manifold of regular velocities ImmT 2

nRm+n is also endowed with another smooth
structure. Denote by (i) = (i1, i2, . . . , in) an increasing n-subsequence of the sequence
(1, 2, . . . ,m + n), and by (σ) the complementary increasing subsequence. From the def-
inition of an immersion it follows that for every regular velocity J2

0γ there exists an
n-subsequence (i) of (1, 2, . . . ,m+ n) such that

det yij(J1
0 ζ) = det (Dj(yiζ)(0)) 6= 0,
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where i ∈ (i), 1 ≤ j ≤ n. Put

W 2(i)
n = {J2

0γ ∈ ImmT 2
nRm+n | det (Dj(yiζ)(0)) 6= 0}, (31.10)

for every n-subsequence (i) of (1, 2, . . . ,m + n). Clearly, W 2(i)
n is an open subset of

ImmT 2
nRm+n, and ImmT 2

nRm+n is covered by the sets W 2(i)
n , where (i) runs through

all n-subsequences of (1, 2, . . . ,m + n). We introduce the adapted coordinates χ2(i)
n =

(wi, wσ, wij, wσi , wijk, wσip) on W 2(i)
n ⊂ ImmT 2

nRm+n, which arise from the canonical coor-
dinates and their derivatives in the following way:

yi = wi, yσ = wσ, yij = wij, yσj = yijw
σ
i ,

yijk = wijk, yσjk = yijkw
σ
i + yijy

p
kw

σ
ip. (31.11)

It is easy to observe that the coordinates wi, wσ, wσi , wσip, are L2
n-invariant. The chart

(W 2(i)
n , χ

2(i)
n ) is called the (i)-subordinate chart, adapted to the canonical group action of

L2
n on ImmT 2

nRm+n.

31.3 HOMOGENEOUS FUNCTIONS AND THE EULER–ZERMELO THEOREM

Consider the manifold of regular velocities ImmT 2
nRm+n, endowed with the canon-

ical coordinates yK , yKj , yKjk, and the differential group L2
n with the canonical coordinates

aij, a
i
jk.
A function F : ImmT 2

nRm+n → R is called positive homogeneous in the variables
yK , yKj , y

K
jk (of degree 1), or just positive homogeneous, if

F (J2
0γ ◦ J2

0α) = detDα · F (J2
0γ) (31.12)

for all J2
0γ ∈ ImmT 2

nRm+n and all J2
0α ∈ L2

n such that detDα > 0.
Note that the elements of the differential group L2

n from this definition are repre-
sented by orientation-preserving diffeomorphisms. Equivalently, condition (31.12) can be
expressed as

F (ȳK , ȳKj , ȳKjk) = det(aij) · F (yK , yKj , yKjk)

for all points (yK , yKj , yKjk) ∈ ImmT 2
nRm+n (see (31.6)), and all real numbers aij, aijk such

that det(aij) > 0.
Let F : ImmT 2

nRm+n → R be a function, and denote by ω0 the global volume
element of Rn, i.e. ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn. Let γ : U → T 2

nRm+n be an immersion
defined on an open subset U of Rn, and T 2

nγ the jet prolongation of γ (cf. (31.7)). Any
compact subset S of U associates with F the integral

FS(γ) =
∫
S

(F ◦ T 2
nγ)(x)ω0. (31.13)

Our main theorem is a criterion of parameter-invariance of the integral (31.13), and
positive homogeneity of the corresponding function.
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Theorem 31.1. (Euler-Zermelo) Let F : ImmT 2
nRm+n → R be a differentiable func-

tion. The following conditions are equivalent:
(a) The function F is positive homogeneous.
(b) The integral FS(γ) (31.13) is parameter-invariant.
(c) The function F satisfies the conditions

∂F

∂yKi
yKj + 2 ∂F

∂yKjk
yKik = δijF,

∂F

∂yKjk
yKi = 0, (31.14)

where 1 ≤ i, j, k ≤ n, and j ≤ k.

The proof is based, roughly speaking, on differentiating the positive homogeneity
condition (31.12) on one side, and in particular on the use of the adapted coordinates
(wi, wσ, wij, wσi , wijk, wσip) (31.11) on open subsets W 2(i)

n of ImmT 2
nRm+n with respect to

the differential group L2
n on the other side. For regular curves (n = 1), the proof can be

found in Urban and Krupka [8].
The conditions (31.14) are the well-known Zermelo conditions, which generalize the

standard Euler theorem on homogeneous functions. In the case of first order velocities,
r = 1, the Zermelo conditions for functions of several variables were studied by McKier-
nan [7]. Recently, Crampin and Saunders [1] applied the Zermelo conditions within the
homogeneous variational theory on infinite-order frame bundles.

31.4 HOMOGENEOUS VARIATIONAL EQUATIONS

We give a note on a class of second-order variational partial differential equations
with a positive homogeneous Lagrangian.

Let F : ImmT 1
nRm+n → R be a function, and γ : U → Rm+n be an immersion

defined on an open subset U of Rn. Any compact subset S of U associates with F the
integral FS(γ), (31.13), and the variational functional

γ → FS(γ) =
∫
S

(F ◦ T 1
nγ)(x)ω0. (31.15)

The equations for extremals of (31.15) are the Euler–Lagrange equations EK(F ) = 0,
where EK(F ) are real-valued functions on ImmT 2

nRm+n,

EK(F ) = ∂F

∂yK
− dj

∂F

∂yKj
= ∂F

∂yK
− ∂2F

∂yL∂yKj
yLj −

∂2F

∂yLs ∂y
K
j

yLjs, (31.16)

called the Euler–Lagrange expressions of F . In (31.16), djf denotes the j-th formal
derivative of f = f(yK , yKj ) with respect to the canonical coordinates yK .

Consider now a system of second-order differential equations,

εM(yK , yKj , yKjk) = 0, (31.17)
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1 ≤ K,M ≤ m + n, where the functions εM are defined on ImmT 2
nRm+n. We say that

(31.17) is variational, if there exists a real function F : ImmT 1
nRm+n → R such that

εM = EM(F ), i.e. if (31.17) coincide with equations for extremals of a certain variational
functional (31.15).

We conclude this paper by describing an important property of variational systems
of equations on ImmT 2

nRm+n, defined by positive homogeneous functions.

Theorem 31.2. Suppose the system of second-order equations, εM(yK , yKj , yKjk) = 0,
(31.17) is variational. The following conditions are equivalent:

(a) The functions εM are positive homogeneous.
(b) The system (31.17) has a positive homogeneous Lagrangian.
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ON HOMOGENEOUS FUNCTIONS IN SECOND-ORDER FIELD THEORY

Abstract: The classical concept of a homogeneous function is introduced and extended within
the theory of differential groups, known in the theory of differential invariants. Invariance under
reparametrizations of solutions of partial differential equations is studied. On this basis the well-
known generalizations of the Euler theorem are obtained (the Zermelo conditions). The positive
homogeneity concept is then applied to second-order variational equations in field theory.

Keywords: Lagrangian, Euler-Lagrange equations, Zermelo conditions, jet, differential group,
field theory.

O HOMOGENNÍCH FUNKCÍCH V TEORII POLE DRUHÉHO ŘÁDU

Abstrakt: Standardní koncept homogenní funkce je zaveden a zobecněn pomocí užití diferen-
ciálních grup, známých v teorii diferenciálních invariantů. Studujeme invarianci vzhledem k
reparametrizacím integrálních křivek parciálních diferenciálních rovnic. Na základě tohoto přís-
tupu obdržíme známé zobecnění Eulerova teorému, tzv. Zermelovy podmínky. Koncept pozitivní
homogenity aplikujeme na variační rovnice druhého řádu v teorii pole.

Klíčová slova: Lagrangián, Eulerovy-Lagrangeovy rovnice, Zermelovy podmínky, jet, difer-
enciální grupa, teorie pole
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