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ON HOMOGENEOUS FUNCTIONS IN
SECOND-ORDER FIELD THEORY

31.1 INTRODUCTION

In this paper we analyse properties of functions, which are invariant with respect
to diffeomorphisms of their domains of definition, and give rise to variational functionals
independent of parametrizations. This leads to the (higher-order) homogeneity concept,
expressed by the well-known Zermelo conditions (see e.g. McKiernan [7], Kawaguchi [3],
Matsyuk [6], Crampin and Saunders [1]); physical meaning of these conditions was studied
by Kondo [4]. To this purpose we use an elementary version of the Ehresmann’s theory
of jets, differential groups and jet prolongations of curves and tangent spaces (see Grigore
and Krupka [2], Krupka and Janyska [5], and references therein). On this basis, we
introduce the positive homogeneity concept for functions, depending on mappings and
their (partial) derivatives of first and second order.

Our main results consist in a characterization of second-order Lagrangians whose
extremals are set-solutions, and in the study of a class of variational second-order par-
tial differential equations. We show that variational systems with positive homogeneous
Lagrangians are defined by positive homogeneous functions, and vice versa. Variational
foundations of Finsler geometry, where fundamental functions satisfies the positive homo-
geneity condition, could be extended by means of the presented theory.

This paper extends the work Urban and Krupka [8] to mappings between Euclidean
spaces (field theory). Throughout the paper the proofs are omitted.

31.2 REGULAR VELOCITIES OVER EUCLIDEAN SPACES

In this section we consider the mappings v : R™ — R™™ n > 2, m > 1, between
Euclidean spaces, which associate a space endowed with a finite-dimensional Lie group ac-
tion, the reparametrization of mappings. The canonical coordinates on R™"" are denoted
by yX, K =1,2,...,m +n.
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By an n-velocity of order 2 at a point y € R™™™ we mean a 2-jet JZv with source
0 € R™ and target v(0) = y. If v is a representative of J3v, then the equivalence class JZv
is identified with the ordered collection of numbers (y* (J§7), yi (J57), yj.(J57)), where
1 < j <k < n, defined by the derivatives of the mapping (z%) — y%~(z?) at the origin
0eR" ie.
v  (Jov) =" (1(0), ¥ (Jgv) = Di(y"7)(0),
Y (J37) = DiD;(y"~)(0).
The set of n-velocities of order 2 at y € R™™" is the jet space J(Zojy)(R”, R™™), and we

denote

(31.1)

TR™" = | TG, RLRT.
yERm+n
The canonical jet projection 72° : T*R™™ — R™*" is a surjective mapping defined by
729(J2y) = 7(0). We consider the set T2R™™ of velocities of order 2 with standard
geometric structures. The functions (y*,yf,yf), defined by (31.1), are the (global)
canonical coordinates on T°R™*™. The canonical trivialization of T°R™"™ is the mapping

TR 5 J2y s (1(0), J2trum0y) € R7™ x T2 o) (R”, R™7), (31.2)

In particular, the mapping (31.2) shows that T?R™™ is a trivial vector bundle with
base R™", projection 720 : T?R™"™ — R™", and type fiber J§,(R", R™*"). We call
T?>R™™ the manifold of n-velocities of order 2 over R™*™.

Recall now the concept of the differential group of R"™. Consider the manifold
J(QO,O)(R”,R") of 2-jets with source and target at the origin 0 € R™. Let o' denotes
the i-th component of the mapping o : R" — R™ for which a(0) = 0. For every
Joa € Jj 0 (R", R"), we define real-valued functions aj and aj, on Jgo(R", R") by

az(Jga) = D;a'(0), a?k(Jga) = Dy.D;a’(0), (31.3)

where 1 < j < k < n. These functions are called the canonical coordinates, and constitute
a global chart on Jg o (R",R"). The invertible jets form a subset of J§ , (R",R"),

consisting of the 2-jets Jia represented by diffeomorphisms o, which we denote by
L2 = Imm J§ o (R",R") = {Jia € J§ ) (R",R") |det(a}(J7a)) # 0}.

Clearly, L? is dense and open subset in J(20 0) (R™",R™). Restricting the functions aé., a;-k
(31.3) to the domain L?, we obtain the canonical global coordinates on L2. A mapping

L2 x L2 > (Jia,J3B) = Jiao JGB = Ji(aoB) € L2, (31.4)

defined by the composition of jets, represents a group multiplication on L?. The set L2
with the group multiplication (31.4) has a Lie group structure, and it is called the second
differential group of R™.
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The manifold T2R™™ is endowed with the right action of the differential group L?
given by composition of jets,

T?R™™ x L2 3 (J3y, Jia) v Jiy o Jia = Ji(yoa) € T2ZR™™, (31.5)
In order to describe this action in canonical coordinates, we denote

() =y (J(voa)), (S =yl (Ji(vea)), Un(Jiv) =y (Ji(v o a)).

Lemma 31.1. The group action (31.5) of the differential group L? onto T?R™'" is
expressed by the equations

" =y, gj]K = yfa?, yj;,f; = ysz]a?az + yfa?k. (31.6)
Any differentiable mapping v with values in R™*", defined on an open subset U C
R", associates the mapping

Uz Ty(x) = J3(yotr_,) € T2R™™, (31.7)

called the (second) jet prolongation of the mapping ~y. For every isomorphism p: V — U
of open subsets of R", and every point z € V', JZ (tryopotr_.) belongs to the differential
group L2. Denote

o = tryy 0 protr ., 1P (2) = J2pu.. (31.8)

In the following lemma we describe the formula for reparametrizations of the domain of
definition of T?y.

Lemma 31.2. For any diffeomorphism p:V — U of open subsets of R™, the jet prolon-
gation T?v of a mapping v : U — R™" satisfies

T2(y 0 1)(2) = T>(u(2)) o 4 (2). (31.9)

We restrict our attention to mappings which are immersions (i.e. their tangent
mappings are injective). JZv € T?R™™™ is called regular, if every representative of J2v is
an immersion at 0 € R™. The set Imm T2R™"™ of regular velocities form an open subset
of T2R™*™ and with the open submanifold structure Imm T?R™*" is called the mani-
fold of reqular n-velocities of order 2 over R™". Restricting the canonical coordinates

(y™, i, yfi), we get the canonical charts on Imm T;R™*", induced by the canonical atlas

of T?R™*™.

The manifold of regular velocities Imm T?R™"" is also endowed with another smooth
structure. Denote by (i) = (iy,42,...,%,) an increasing n-subsequence of the sequence
(1,2,...,m+n), and by (¢) the complementary increasing subsequence. From the def-
inition of an immersion it follows that for every regular velocity JZv there exists an
n-subsequence (7) of (1,2,...,m + n) such that

det y(J3¢) = det (D,(4€)(0)) # 0,
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where ¢ € (i), 1 < j < n. Put
W20 = {Jgy € Imm T;R™" | det (D;(y'¢)(0)) # 0}, (31.10)

for every n-subsequence (i) of (1,2,...,m + n). Clearly, w29 is an open subset of

Imm 7T?R™, and Imm T?R™*" is covered by the sets Wi where (i) runs through

all n-subsequences of (1,2,...,m + n). We introduce the adapted coordinates Xi(l) =

g
ip
dinates and their derivatives in the following way:

. . . 2 y . . :
(W', w?, wj, wi, wi, wg,) on w29 < Imm T2R™™, which arise from the canonical coor-

T 0 o __ .0 T o __ 1,0
y =w, y =w, yj_w]a y]_ijzu

Yin = Wik, Y5, = Yipwi + y5ypwg,. (31.11)

It is easy to observe that the coordinates w', w’, w¢, w?, are L2-invariant. The chart

. . 17 p?
( 20, Xi(z)) is called the (i)-subordinate chart, adapted to the canonical group action of

L% on Imm T?R™™.
31.3 HOMOGENEOUS FUNCTIONS AND THE EULER-ZERMELO THEOREM

Consider the manifold of regular velocities Imm T?R™"", endowed with the canon-
ical coordinates y’, y]K , yﬁ, and the differential group L? with the canonical coordinates
as, Q.

A function F : Imm T2R™" — R is called positive homogeneous in the variables

yK,yJK, yjl-,i (of degree 1), or just positive homogeneous, if

F(J3y o Jia) = det Da - F(J27) (31.12)

for all J2y € Imm T?R™"" and all J2a € L? such that det Da > 0.

Note that the elements of the differential group L? from this definition are repre-
sented by orientation-preserving diffeomorphisms. Equivalently, condition (31.12) can be
expressed as

F@", g, u5,) = det(al) - F(y™, yl ylh)

for all points (y*, 4}, y};) € Inm T,R™" (see (31.6)), and all real numbers a?, a}, such

that det(a’) > 0.

Let F' : ImmT?R™™ — R be a function, and denote by wy the global volume
element of R", i.e. wy = daz' Adz? A... Adx™. Let v : U — T?R™ be an immersion
defined on an open subset U of R", and T2y the jet prolongation of v (cf. (31.7)). Any
compact subset S of U associates with F' the integral

Fs(y) = / (F o T27) () wo. (31.13)

Our main theorem is a criterion of parameter-invariance of the integral (31.13), and
positive homogeneity of the corresponding function.
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Theorem 31.1. (Euler-Zermelo) Let F: Inm T?R™™ — R be a differentiable func-
tion. The following conditions are equivalent:

(a) The function F' is positive homogeneous.

(b) The integral Fs(v) (31.13) is parameter-invariant.

(¢) The function F satisfies the conditions

oF oF oOF
y +2 yz =0'F, —wyl =0, 31.14

where 1 < 1,5,k <n, andjgk.

The proof is based, roughly speaking, on differentiating the positive homogeneity
condition (31 12) on one side, and in particular on the use of the adapted coordinates
(w', w?, wh, w], wh, w?) (31.11) on open subsets W29 of Imm T2R™™ with respect to
the d1fferent1al group LEL on the other side. For regular curves (n = 1), the proof can be
found in Urban and Krupka [8].

The conditions (31.14) are the well-known Zermelo conditions, which generalize the
standard Euler theorem on homogeneous functions. In the case of first order velocities,
r = 1, the Zermelo conditions for functions of several variables were studied by McKier-
nan [7]. Recently, Crampin and Saunders [1] applied the Zermelo conditions within the

homogeneous variational theory on infinite-order frame bundles.

31.4 HOMOGENEOUS VARIATIONAL EQUATIONS

We give a note on a class of second-order variational partial differential equations
with a positive homogeneous Lagrangian.

Let F' : Inm T}R™™ — R be a function, and v : U — R™" be an immersion
defined on an open subset U of R". Any compact subset S of U associates with F' the
integral Fg(7), (31.13), and the variational functional

1= o) = [(FoTi (e (31.15)

The equations for extremals of (31.15) are the Euler-Lagrange equations Ex(F) = 0,

where Ex(F) are real-valued functions on Imm T>R™*",

9F OF 9F  &F , OF
Ty YoyE T oyK T ytayRY T ayloyk

y]Ls, (31.16)

called the Euler-Lagrange expressions of F. In (31.16), d;f denotes the j-th formal
derivative of f = f(y*,y) with respect to the canonical coordinates y*.
Consider now a system of second-order differential equations,

en(y™,yl yk) =0, (31.17)

234



SYSTEMY WSPOMAGANIA w INZYNIERI PRODUKCJT | 2017

Cross-border exchange of experience in production engineering ... issue 4

1 < K, M < m + n, where the functions e, are defined on Imm T2R™*". We say that
(31.17) is variational, if there exists a real function F' : Imm 7T}R™"™ — R such that
ev = Ey(F), ie. if (31.17) coincide with equations for extremals of a certain variational
functional (31.15).

We conclude this paper by describing an important property of variational systems
of equations on Imm T2R™™ defined by positive homogeneous functions.

Theorem 31.2. Suppose the system of second-order equations, eM(yK,y]K,yfi) = 0,

(31.17) is variational. The following conditions are equivalent:
(a) The functions ey are positive homogeneous.

(b) The system (31.17) has a positive homogeneous Lagrangian.
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ON HOMOGENEOUS FUNCTIONS IN SECOND-ORDER FIELD THEORY

Abstract: The classical concept of a homogeneous function is introduced and extended within
the theory of differential groups, known in the theory of differential invariants. Invariance under
reparametrizations of solutions of partial differential equations is studied. On this basis the well-
known generalizations of the Euler theorem are obtained (the Zermelo conditions). The positive

homogeneity concept is then applied to second-order variational equations in field theory.

Keywords: Lagrangian, Euler-Lagrange equations, Zermelo conditions, jet, differential group,

field theory.

O HOMOGENNICH FUNKCICH V TEORII POLE DRUHEHO RADU

Abstrakt: Standardni koncept homogenni funkce je zaveden a zobecnén pomoci uziti diferen-
cialnich grup, zndmych v teorii diferencidlnich invariantd. Studujeme invarianci vzhledem k
reparametrizacim integrdlnich krivek parcidlnich diferencidalnich rovnic. Na zdkladé tohoto pris-
tupu obdrZime zndmé zobecneni Fulerova teorému, tzv. Zermelovy podminky. Koncept pozitivni

homogenity aplikujeme na variacni rovnice druhého rddu v teorii pole.

Klicovd slova: Lagrangidn, Eulerovy-Lagrangeovy rovnice, Zermelovy podminky, jet, difer-

encidlni grupa, teorie pole
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