
Management Systems 

in 

 

2016, No 3 (23), pp 145-149 

   

Abstract: 
The aim of the article is to present a mathematical definition of the object model, that is known in computer science as 
TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures 
based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. 
The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathe-
matical model of the object TreeList and the parameters, used in determining the utility of structures created through 
this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a 
brief summary and plans for future research related to the algorithm presented in the article.  

THE PROPOSAL OF A EVOLUTIONARY STRATEGY GENERATING  
THE DATA STRUCTURES BASED ON A HORIZONTAL TREE FOR THE TESTS 

INTRODUCTION 

Very often in science, technology, and teaching it exists 
a situation, that an occurrence or a process which can be 
described by the model, which is close to a specific struc-
ture in the nature. The article focuses on the description of 
data storage based on structure called tree. In the next 
three chapters will be discussed the horizontal trees, that 
are classified as traditional trees. These chapters presents 
mathematical definition of the structures based on TreeList 
and essence of the problem raised in the publication in 
order to maintain consistency of the article. 

Data trees are a class of graphs known in mathematics. 
From the point of view of software testing for usability and 
presentation the data, a very important aspect is the ar-
rangement of these data and an overall presentation of 
data structures. For the user convenient and transparent 
way of data presentation are structures called TreeList [7, 
8]. Properties of the TreeList structure and a classic tree 
known in informatics [1] are analogical, but with one differ-
ence. TreeList structures are used for the horizontal display 
of pieces of data, that are dependent on each other in a 
hierarchical manner. Examples of such tree presents  
a Figure 1. 

The kind of trees as in Figure 1 can be obtained simply 
by placing trees described in [1] from the left side to the 
right side of the screen. This gives a good visual effect of a 
horizontal presentation. The structure presented above is 
usually implemented in this way, that the user can expand 
and collapse branches (nodes). This is useful in the data 
presentation that are related with costs, because the costs 
do not always have to be showed at the analytical level. 
The above tree is an example of a presentation of costs. 
The data, that contains  the tree can be arbitrary, but it is 
important, that the data has to be hierarchically depend-
ent.  

TESTING OF THE HORIZONTAL TREES PROBLEM 

A very important step in designing tests is to prepare 
test data (input data) and structures for testing. The article 
focuses mainly on the generation of structures designed to 
receive and to process multidimensional input data. Such 
procedure is an activity, that has to be completed before 
delivery of the finished input data to the tree structure. 
These structures should be best suited to the specifications 

Marek ŻUKOWICZ, Michał MARKIEWICZ 
Rzeszow University of Technology 

Key words: TreeList object, evolutionary algorithms, evolutionary strategy, software testing  

DOI 10.12914/MSPE-01-03-2016 Date of submission of the article to the Editor: 02/2016 
Date of acceptance of the article by the Editor: 04/2016 

 

Fig. 1 Tree showing costs in the B2B OPTIbud system authorship 
of OPTeam  



 

146                                                                                                                Management Systems in Production Engineering 3(23)/2016                                                                      
           M. ŻUKOWICZ, M. MARKIEWICZ - The proposal of a evolutionary strategy generating the data structures on a horizontal tree for test 

of the tested program. The article presents the approach, 
that using an evolutionary algorithm and given initial struc-
tures to creates new better structures suited to the needs 
of the structure test, basing on the example of using class 
TreeListControl in designing construction budgets in the 
B2B OPTIbud system. Evolutionary algorithms have a lot of 
features that allow in some way to control evolutionary 
process [6] and thus there is a high probability that gener-
ated structures will be characterized by such features as 
[3]: 

 dependence on the system (quality depends on tech-
nological aspects), 

 completeness (the degree to which this data has val-
ue for all attributes in the system), 

 timeliness, 
 credibility,  
 cohesion (eg. a consistency between the test data), 
 accuracy (for tests on numbers in applications that 

require high accuracy, eg. in the conversion of units 
of measurement), 

 dependence on context. 
All features have to be satisfy for the test data [2, 4, 5]. 

There are not many such publications that would describe 
the strategy of testing data structures based on horizontal 
trees. Therefore, the authors decided to describe this prob-
lem and suggest a solution, that allows to generate hori-
zontal trees in this way that as the result of evolutionary 
processes there are created the structure corresponding to 
the preferences of people designing tests. 

MATHEMATICAL DESCRIPTION OF STRUCTURES BASED ON 
THE HORIZONTAL TREES AND MEASURES OF THEIR USA-
BILITY 

Durning a  designing the evolutionary algorithm, it must 
to be first make an assumptions about the data structure 
based on the horizontal tree and about parameters which  
can be measured in order to formulate a fitness function. 

The assumptions concerning of the structure D con-
sisting of horizontal trees are as follows: 

 there is at least one tree (presenting the horisontal 
data), 

 a node (including the root) has at least one feature 
which is described by a number (real positive num-
ber), 

 the value of the specific  node numer features in the 
level  is a sum of the children of this node, when the 
children have only the (n + 1) level, 

 any number  feature of the node x (root too) can be 
divided (but it is not required ) into periods with val-
ues xi, and in this case the sum values for each period 
is equal, namely: 

 
 
 
 
 
The possibilities of generating the above-described 

structures, which arise from assumptions are infinite. In 
practice in the information systems every structures are 
finite. Therefore it is  needed a strategy that will provide 
the structure, which likely will be applied in practice. To 
achieve this goal, it should be specify measures related to 
the above-described structure. Before a generating struc-
tures will be taken into account the following restrictions: 

 quantity of trees k in the structure D, 
 a nesting level sk of k-th tree (the level on which the 

leaves of a tree), 
 the total number of children tkj for a node j in k-th 

tree, 
 number of numerical characteristics u – common 

ownership for all trees in the D, 
 number of nonumerical characteristics v – common 

ownership for all trees in the D too. 
Encoding information describing a single tree will be 

done by the vector: 
 
 

where: 
dk – number of a tree,  
sk – the nesting level of k-th tree,  
tk – the total number of children tkj for a node j in k-th tree, 
(root,s level equals 0).  

Let a single tree will be defined by the following func-
tion Fk measuring usability: 

 
 
 
 
 
 

where: 
functions f, g : N → (0,1] and w1, w2 are weights.  

It is easy to see, that the funktion Fk also has a value in 
the range (0,1]. The structure, which will consist of the sum 
of individual trees will have the following description: 

 
 
 
 
 
 

where: 
i – numer of the structure consisting of horizontal trees, 
ui, vi – numerical and nonnumerical characteristics common 
for all trees in the structure Di. 

This structure will be called later in the article the ma-
trix of a structure of horizontal trees.  

Let D = {D1, … ,Dn} will be a set of a structures which 
constist of a horizontal trees. 

The fitness function F : D → (0,1] for a structure Di will 
be given by the formula: 

where: 
wc, wd – weigths of a function F, 
n – the numer of a trees in a structure Di(ui vi).  

Having defined the fitness functions it can be designed 
an evolutionary algorithm, which will be described in the 
next chapter [6]. 

THE EWOLUTIONARY ALGORITHM PROJECT FOR D SET 

In evolutionary algorithms, there is the phenomenon of 
crossing components and their mutation [6]. Therefore, to 
design an evolutionary algorithm there are needed two 
functions: one is responsible for crossing elements to one 

 (1)  




m

i

ixx

1

 (2)   },...,1{ ksktktkskd 

 (3)     
 










































 
ks

j

kjtjg

ks

w
ksfw

ww
kdkF

1
2

2
1

21

1

 (4)  

 (5)    

      

dwcw

n

k

kdkF
n

dw
ivliuhdw

vuiDF

























1

1,1

 
 
 
 




















}..,...,1{,..

}..2,...,21{,2..

}..1,...,11{,1....

,
2

1

kks
tktks

stts

stts

iviuiD

[ 
[ 
[ 

] 
] 
] 



 

Management Systems in Production Engineering 3(23)/2016                                                                                                               147 
M. ŻUKOWICZ, M. MARKIEWICZ - The proposal of a evolutionary strategy generating the data structures on a horizontal tree for test            .                                       

another and the second is the mutation operator. There-
fore, according to the algorithm: KM Algorithm (crossing 
and mutation of horizontal trees). Let D1, D2 will be struc-
tures consist of horizontal trees. Let D1 will be consist of  
trees and D2 will be consist of  trees. An algorithm KM is 
given as a function 

 
 
 

by the conditions: 
1. Take the rest of the division of n by 2, add to the rest 1, 

save the calculated value as x. 
2. Take the rest of the division of k by 2, add  to the rest, 

save the calculated value as y. 
3. Create a new structure by combining x initial trees, 

starting from the first row in the matrix of a structure 
D1, with rows of the structure D2 starting from the row 
y. 

4. Write down the number of trees in the new structure as 
s. 

5. For each row in the newly established structure write 
numbers (ti1),…,(tik) binary. 

6. For (i=1; i≤s; s++) 
7.  do {  
8.   k = 1; 
9.  Do a mutation of element tik with probability 

q, bit  by bit. 
10.  If the mutated element tik is located in the 

field of the corresponding function, accept a 
mutation. 

11.  If the mutated element tik is not located in the 
field corresponding function, dont’t accept a 
mutation.   

12.   k ++. 
13. } while (tik exists in the tree s). 
14. The guantity of numerical characteristics from struc-

tures D1, D2,  choose randomly from values u1, u2, and 
save as u. 

15. The guantity of nonnumerical characteristics from struc-
tures D1, D2, choose randomly from values v1, v2, and 
save as v. 

16. Save newlu structure with parameters u and v. 
Having defined an algorithm for implementing the pro-

cess of crossover and mutation, it  can be to specify evolu-
tionary algorithm, in which the field is set D: ALGEN Algo-
rithm (w1, w2, wc, wd, q, n, m, c, fv) (Evolutionary algotithm 
for structures D1, … ,Dn) 

 

{ 
1. Draw m structures and mark them as D’1, 

D’2, D’3, … ,D’m 
for (j=1, j < c, j + +) 
{ 

  2. Do newly structures by using the  
KM Algorithm: 
D”1=X(D’1, D’2), 
D”2=X(D’2, D’3), 
D”3=X(D’3, D’4), 
 ..... 
D”m=X(D’m, D’1), 

3. Compare the sum s=          F[D’i(ui, vi)] with  
the sum l=            F[D”i(ui, vi)] 
 if s ≥ l, start next iteration, 
 if s < l change elements D’1, D’2, D’3, 

… ,D’m to D”1, D”2, D”3, … ,D”m, 
 if l > fv break iteration and save elements 

D’1, D’2, D’3, … ,D’m  
} 

4. Give generated ofspring D’1, D’2, D’3, … ,D’m.  
} 

where: 
w1, w2, wc, wd – weights of a function measuring usability 
(described in the previous section) , 
q – mutation probability, 
n – numer of all structures, 
c – numer of iterations in the case of failure, 
fv – values, which break algorithm with positve result. This 
parameter determines whether to generate structures in 
the next iteration or not. It should also be noted that the 
values l, v can not be  greather than number m. 

APPLICATION AN ALGEN ALGORITHM IN THE  BUDGET 
TESTING IN THE B2B OPTIBUD SYSTEM 

Budgets in the B2B OPTIbud system 

 The Budgets module in the B2B OPTIbud system is 
used to create estimates and has been created for Polish 
construction companies. Its basic functionality: create 
budgets for projects on the basis of data from multiple 
sources, converting to budgets and schedules reflected on 
the timeline of the project [3]. Built-in module will be 
grouping mechanisms, merge, breaking the budget items 
and the ability to create all kinds of budgets: simplified or 
full, tracking the degree of implementation of the project 
the cost side as well.  The main form of the budget simpli-
fied B2B system OPTIbud shown in the Figure 2. 

  1i

m

  1i

m

 (6)    DDDDDX :2,1

 

Fig. 2 Costs form of a building budget in the  B2B OPTIbud system  



 

148                                                                                                                Management Systems in Production Engineering 3(23)/2016                                                                      
           M. ŻUKOWICZ, M. MARKIEWICZ - The proposal of a evolutionary strategy generating the data structures on a horizontal tree for test 

A structure which presetns costs is analogous to the 
structure described in section mathematical description of 
structures based on the horizontal trees and mesures of 
their usability. This structure is a good example of an appli-
cation of the ALGEN algotithm. Numerical characteristics 
shown in the picture are columns: Value of incomes 
(Wartość pozycji), Value of income (Wartość przychodów), 
Percentage advancement (Zaawansowanie procentowe), 
Earlier realization (Realizacja wcześniej), Realization 9/2015 
(Realizacja 9/2015), Planning 9/2015 (Planowanie 9/2015), 
Percentage of realization 9/2015 (Procent real.: 9/2015),itd. 
Nonnumerical characteristics shown in the picture are col-
umns Number (Numer), Name of a position (Nazwa Pozycji), 
Date from (Data-od), Date to (Data-do). The columns begin-
ning with the words Planowanie are values created by divid-
ing the planned revenues from the budget by 4, because 
the budget has that schedule (Date form and Date to). 
Quantity of a the trees equals 5 in this budget. Level of a 
tree, which have root with numer 1 equals 2 (root – level 0, 
nodes 1.1 and 1.2 – level I, so nodes 1.2.1 i 1.2.2 – level II). 
In the previous chapter are given definitions of a function-
swhich measure the fitness of a tested structures. Formulas 
(3) and (5) contain functions  f, g, h, l. The following there are 
given definitions of these functions, which will be used to im-
plement KM and ALGEN algorithms  on the system OPTIbud: 

 
1.            for 

 
 
              for 
 
              for 
       

2.              for 
 

              for 
 
              for 
 
 
    for 

 
    for 
 
The formulas of the above-described functions have 

been deliberately chosen in such a way that did not reach 
values greater than 1 and an evolutionary algorithm  gener-
ates the best possible structure for testing (do not have a 
huge number of nodes). 

An implementation of an ALGEN algorithm in the Budgets 
module in the system B2B OPTIbud 

Let the initial input population D will consist of the fol-
lowing budgets: 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
respectively with parametrs 
u1=6, v1=2, u2=8, v2=2, u3=7, v3=3, u4=7, v4=3, u5=4, v5=2, 
u6=5, v6=2, u7=6, v7=2, u8=7, v8=3, u9=8, v9=3, u10=10, v10=4. 
Let the input parameters of the ALGEN algorithm will have 
values: 
w1=2, w2=3, wc=2, wd=1, q=0,2, n=10, m=4, c=30, fv=3.7. 
The results returned by the algorithm after six iterations 
are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
with parameters u’1=6, v’1=3, u’2=8, v’2=2, u’3=7, v’3=3,  
u’4=7, v’4=3, 
with values s=3.5003, l=3.7223. 

For example, the first tree in the budget D’1 in the B2B 
OPTIbud system is shown in the Figure 3. 

There are an infinite number of possibilities for testing 
the ALGEN algorithm. The aim of the article, however, was 
to identify the methodological approach, which is why the 
further results related to the study of algorithm parameters 
will be released in the next publication. 

CONCLUSIONS 

 The aim of this article is to describe the structures 
presenting the data and to show evolutionary algorithm, 
that generates these structures to obtain best fitness of 
them for tests. This was achieved by designing a mathe-
matical model of the structure, that consists of a horizontal 
trees. Matching functions have been deliberately defined in 
this way, that their values are in the range (0,1] and can be 
easily converted into the percentages value. 

 In the future, the authors intend to extend research 
of the issue described in this work by modifying the algo-
rithm ALGEN and compare its performance with the new 
one. The authors plan also to publish an article showing the 
behavior of the algorithm for different input data. 

  (7)   ,14
4

1
 xxf 81  x

  (8)  































,130
30

1

,124
24

1

,112
12

1

,16
6

1

,13
3

1

x

x

x

x

x

xjg

1,61  jx

2,123  jx

3,248  jx

4,4812  jx

4,820  jx

  (9) 

  ,16
6

1
 uuh 121  u

  ,13
3

1
 vvl 61  v

  
  

  
  

,

8,7,2

24,12,6,5,4

18,7,3,3

8,4,2,1,4

1

























D

  
  

  
  

,

8,7,2

24,12,6,5,4

18,7,3,3

8,4,2,1,4

2

























D

  
  
  

  

,

16,8,4,2,4

12,8,4,3

16,8,6,2

24,12,2,3

3

























D

  
  
  
  

,

18,2,2

60,4,2

29,7,2

92,9,2

4

























D

  
  

  
  

,

16,9,2,3

60,20,4,3

3,2,2

4,1,2

5

























D

  
  

  
  

,

18,2,2

60,4,2

29,16,7,3

92,27,9,3

6

























D

  
  
  
  

,

44,18,2,3

60,16,8,4,4

29,17,7,2,1,5

92,9,2,1,4

7

























D

  
  
  
  

,

44,18,3,3

60,4,2,3

29,7,2,3

92,9,9,3

8

























D

  
  
  
  

,

18,2,2

44,4,2

33,7,2

92,9,2

9

























D

  
  

  
  

,

18,7,2,3

60,4,2

29,16,7,3

92,9,5,1,4

10

























D

  
  

  
  

,

2,3,2

5,15,4,1,4

3,3,2,3

13,4,3,1,4

1'

























D

  
  
  

  

,

2,1,2,2,4

4,4,1,3

3,3,2,3

46,5,2

2'

























D

  
  

  
  

,

5,3,2

8,2,3,4,4

20,17,4,1,1,5

14,6,2,1,4

3'

























D

  
  

  
  

,

23,1,2

12,6,2

22,11,3,3

19,1,3,3

4'

























D



 

Management Systems in Production Engineering 3(23)/2016                                                                                                               149 
M. ŻUKOWICZ, M. MARKIEWICZ - The proposal of a evolutionary strategy generating the data structures on a horizontal tree for test            .                                       

mgr Marek Żukowicz, mgr Michał Markiewicz 
Rzeszow University of Technology 
Faculty of Electrical Engineering and Computer Science 
Department of Automation and Computer Science 
ul. Wincentego Pola 2, 35-959 Rzeszów, POLAND 
e-mail: bobmarek@o2.pl 

mmarkiewicz13@gmail.com 

 

REFERENCES 

[1] L. Banachowski, K. Diks and W. Rytter. Algorytmy i 
struktury danych, Warszawa: Wydawnictwa Naukowo-
Techniczne, 2011. 

[2] D. Farley and J. Humble. Ciągłe dostarczanie opro-
gramowania, Gliwice: Helion, 2015. 

[3] M. Łobaziewicz. „Standard architektury modelu syste-
mu B2B wspomagającego zarządzanie procesami bu-
dowlanymi”, in Od procesów do oprogramowania: 
badania i praktyka, P. Kosciuszenko, M. Śmiałek and J. 
Swacha, Warszawa: Wydawnictwo Polskie Towarzy-
stwo Informatyczne, 2015, pp. 111-120. 

[4] A. Piaskowy and R. Smilgin. Dane Testowe: teoria i 
praktyka, Gliwice: Helion, 2011. 

[5] A. Roman. Testowanie i jakość oprogramowania, War-
szawa: Wydawnictwo Naukowe PWN, 2015. 

[6] D. Rutkowska, M. Piliński and L. Rutkowski. Sieci neu-
ronowe, algorytmy genetyczne i systemy rozmyte, 
Warszawa: Wydawnictwo Naukowe PWN, 1997. 

[7] WinForms Tree List, [Online]. Available: https://
www.devexpress.com/products/net/controls/
winforms/tree_list/ 

[8] WPF Tree List,  [Online]. Available: https://
www.devexpress.com/products/net/controls/wpf/
tree_list/ 

 

Fig. 3 Costs form in the budgets module D’1 in the B2B OPTIbud system 

Artykuł w polskiej wersji językowej dostępny na stronie 
internetowej czasopisma. 

The article in Polish language version available on the web-
site of the journal  

https://www.devexpress.com/products/net/controls/winforms/tree_list/
https://www.devexpress.com/products/net/controls/winforms/tree_list/
https://www.devexpress.com/products/net/controls/winforms/tree_list/
https://www.devexpress.com/products/net/controls/wpf/tree_list/
https://www.devexpress.com/products/net/controls/wpf/tree_list/
https://www.devexpress.com/products/net/controls/wpf/tree_list/

